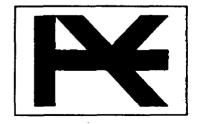
CEREBRO SOCIAL


Michael S. Gazzaniga ALIANZA EDITORIAL

Sección: Humanidades

Michael S. Gazzaniga: El cerebro social

El Libro de Bolsillo Alianza Editorial Madrid

Título original: The Social Brain. Discovering the Networks of the Mind

Traducción: Carlos Frade

Reservados todos los derechos. De conformidad con lo dispuesto en el art. 534-bis del Código Penal vigente, podrán ser castigados con penas de multa y privación de libertad quienes reprodujeren o plagiaren, en todo o en parte, una obra literaria, artística o científica fijada en cualquier tipo de soporte sin la preceptiva autorización.

© 1985 by Basic Books Inc.

© Ed. cast.: Alianza Editorial, S. A.; Madrid, 1993

Juan Ignacio Luca de Tena, 15; teléf. 741 66 00; 28027 Madrid

ISBN: 84-206-0646-4

Depósito legal: M. 27.297/1993

Fotocomposición: EFCA

Impreso en Fernández Ciudad, S.L. Catalina Suárez, 19. 28007 Madrid

Printed in Spain

En recuerdo de Jeffrey David Holtzman, científico, amigo y compañero

Esta es la historia de un descubrimiento científico, de su evolución y, por último, de sus efectos en mi comprensión personal de los procesos sociales.

Volviendo la vista atrás hacia los últimos veinticinco años, me doy cuenta de lo poco que podemos predecir nuestro futuro. Desde los hábitos personales hasta las actividades científicas, nuestros esfuerzos cambian de un año a otro de forma completamente impredecible. Las que no cambian son las cuestiones iniciales que no han sido resueltas; en mi caso estas cuestiones son aquellas centradas en el modo como la ciencia del cerebro podía abordar los problemas de la conciencia personal y lograr, a través de ellos, una comprensión más amplia de los procesos sociales. Algunas personas muy inteligentes pueden maravillarse por la explicación de un fenómeno y contentarse con dejarlo factualmente encapsulado. Otras se atormentan con la cuestión secundaria del

modo como se relaciona un hecho con un valor o con una forma personal de comprender la vida. Si bien es cierto que la mayor parte de los hechos científicos no se relacionan directamente con las realidades sociales más amplias, algunos sí lo hacen. Creo que he dado con tales conexiones, y ésta es una de las razones de escribir este libro.

En este libro cuento cómo mi experiencia en la investigación psicológica y del cerebro me ha conducido a una comprensión mecanicista del modo como están organizados nuestros cerebros para producir nuestras cogniciones y, fundamentalmente, nuestras creencias. Todos nosotros somos lo que son nuestras creencias personales. Vivimos y morimos por nuestros compromisos con determinadas formas de entender la vida. ¿Qué hay en el cerebro humano que hace que la formación de creencias sea tan esencial en la manera de funcionar del mismo? ¿Hay una lógica identificable en la organización del cerebro humano que prediga los fenómenos que se relacionan con la formación de creencias? Abordo ésta y muchas otras cuestiones, pero solamente después de hacer un relato, que espero que sea instructivo e incluso entretenido, de mis actividades de investigación del cerebro durante los últimos veinticinco años.

Cuento la historia cronológicamente, tal como ocurrió. Sin embargo, mi primer borrador no lo escribí de esa forma. En éste incurrí en la habitual postura científica de describir y explicar formalmente una idea, siguiendo un orden que implicaba que la interpretación teórica propuesta estaba elaborada de antemano en la mente, que después se realizaron los experimentos pertinentes, para finalmente presentar los resultados al mundo como un producto inexorable de la fría lógica. Son muy pocos, desde luego, los conocimientos humanos que surgen de esa forma, aunque la mayor parte de las descripciones de las

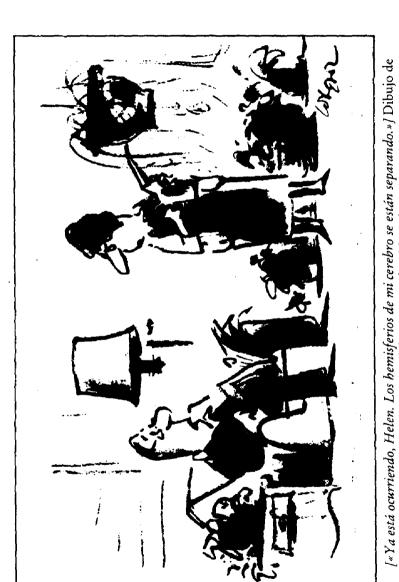
odiseas científicas hagan creer al lector que la investigación siempre avanza de forma lógica.

Mi historia se presenta dividida en tres partes. En la primera, cuento de qué modo mi comprensión de los principios fundamentales de la organización del cerebro, descubiertos a partir del estudio de poblaciones singulares de pacientes con problemas neurológicos, aboga por una determinada concepción del funcionamiento cerebral que denominaré la «concepción modular». Los datos sugieren que nuestra vida mental viene a ser resultado de una reconstrucción de las actividades independientes del gran número de sistemas mentales que poseemos. Dentro de nosotros reside una confederación de sistemas mentales. Hablando metafóricamente, podría decirse que los humanos somos más parecidos a una entidad sociológica que a una entidad psicológica singular y unificada. Tenemos un cerebro social.

A continuación, pasaré a analizar las consecuencias de estas ideas desde la perspectiva de la arqueología así como a partir de una interpretación de los registros históricos relacionados con la formación de creencias religiosas (las razones por las que establezco estas conexiones se harán obvias más adelante). Y, finalmente, en el último capítulo, sostengo que mis principales descubrimientos en la investigación sobre el cerebro me conducen a una determinada concepción de la cultura. No es un capítulo para tímidos. La comprensión de las relaciones biológicas y psicológicas humanas sigue siendo una empresa muy antigua. Cuanto más profunda sea la comprensión de estos procesos, mejor entenderemos los procesos sociales. Con todo, lo que espero que surja de este capítulo es la idea de que la tarea fundamental y más característica del científico es seguir analizando estos problemas en un intento de lograr tal síntesis.

Estoy acostumbrado a escribir en un estilo científico

que exige referencias para todo. El enfado de nuestros colegas cuando piensan que no se han citado adecuadamente sus ideas apenas puede imaginarse. No obstante, puesto que este libro tiene tanto de narración personal como de estudio científico, me he comprometido a citar las fuentes únicamente en los casos de citas directas y otras referencias específicas.


Tengo que mostrar mi agradecimiento a las muchas personas e instituciones que me ayudaron a llevar a cabo este ejercicio.

Mi mayor deuda es con Jeffrey Holtzman, a quien está dedicado este libro. El me alentó y me animó a lo largo de este trabajo. Sus críticas eran implacables pero siempre constructivas. Su trágica muerte, causada por la enfermedad de Wegener en la primavera de 1985, ha creado un vacío en mi vida que no será fácil llenar. Como científico y como persona, Holtzman tenía unas cualidades superiores. Era único.

Estoy en deuda con Stephen Kosslyn, Nisson Schechter, Ira Black y Michael Posner por haber leído concienzudamente una primera versión del manuscrito y por sus valiosas sugerencias. Agradezco a Edgar Zurif, Gary Lynch, Ofer Bar-Yosef y Robert Sommerville sus críticas. Mi reconocimiento a muchos de los maestros de mi vida intelectual, empezando por Leon Festinger, David Premack y George Miller. Todos me ayudaron y me hicieron sugerencias. A un nivel práctico, mi secretaria, Christine Black, trabajó incansablemente como siempre lo hace, y Kitty Miller hizo un denodado esfuerzo para verter mi prosa a la lengua inglesa. Y, sobre todo, mi agradecimiento a todos los maravillosos pacientes que hicieron posible esta obra.

La Sloan Foundation, la Mcknight Foundation y el U.S. Public Health Service (Servicio Público de Salud de EE.UU.) me prestaron ayuda económica. Pude escribir

este libro gracias a una generosa beca de la John Solomon Guggenheim Memorial Foundation. Por último, mi más sincero agradecimiento al personal de Basic Books, y especialmente a Jo Ann Miller, mi editora. Ella hizo que todo funcionase.

[«Ya está ocurriendo, Helen. Los hemisferios de mi cerebro se están separando.»] Dibujo de Lorenz; © 1980. The New Yorker Magazine Inc.

Capítulo 1 El cerebro interpretativo

Creer es lo que mejor hacemos los humanos —podemos creer que hay un Dios, o que la universidad cumple o no cumple bien su cometido—, y de hecho somos la única especie capaz de hacerlo. ¿Qué hay en la mente o en el cerebro humanos que hace que estemos dotados de esta singular capacidad? Y, lo que aún es más importante, ¿de qué forma se relaciona esta singular habilidad con el modo como concebimos y ordenamos el mundo que nos rodea? En este libro me propongo demostrar la existencia de un vínculo nuevo y de vital importancia entre el modo en que está organizado nuestro cerebro y el modo en que construimos nuestras creencias; un vínculo que espero que nos ayude a adquirir una mayor comprensión de la cultura humana en general, y de la importante relación que existe entre los procesos biológicos y los problemas más relevantes del comportamiento humano.

Las creencias son el punto de confluencia de gran

parte de nuestra actividad cognitiva. Son propiedades mensurables de nuestra vida mental y un factor decisivo, huelga decirlo, a la hora de determinar gran parte de lo que aceptamos como verdadero sobre el mundo. Las creencias son fundamentales en la experiencia humana, a pesar de lo cual el tema de cómo se forman y por qué estamos tan comprometidos con las mismas ha sido, hasta hace poco, más propio de filósofos y novelistas que de científicos de laboratorio.

No obstante, los últimos avances en nuestra comprensión del modo en que están organizados el cerebro y la mente están haciendo que esta actitud cambie. De hecho, la idea que ahora mismo nos formamos de por qué nos comportamos como lo hacemos es más clara que ninguna otra que nos hubiésemos formado con anterioridad. Este mayor conocimiento, adquirido en buena medida a partir del estudio detallado de pacientes con problemas neurológicos, abre las puertas a una nueva comprensión de las características permanentes de nuestra especie.

En este libro adoptamos una nueva forma de pensar sobre la organización del cerebro. Muchas de las teorías predominantes sobre el pensamiento humano han sostenido que la resolución de problemas tiene lugar únicamente en el nivel de la experiencia consciente y es el producto del sistema lingüístico humano en sí mismo. Una de las suposiciones principales de muchos investigadores en el ámbito de la psicología ha sido que los elementos de nuestros procesos de pensamiento proceden serialmente en nuestra «conciencia» para formar los fenómenos del conocimiento. En mi opinión, esta noción de la experiencia consciente como algo lineal y unificado es completamente errónea.

A diferencia de estas teorías, yo sostengo que el cerebro humano tiene una organización de tipo modular. Por

«modularidad» entiendo una forma de organización del cerebro consistente en unidades de funcionamiento relativamente independientes que actúan en paralelo. La mente no es un todo indivisible que opere de una única forma para resolver todos los problemas. Lejos de poseer esta unidad, la mente se compone de diferentes unidades espe-cíficas que se pueden identificar, las cuales se ocupan de toda la información a la que están expuestas. La enorme y copiosa cantidad de información que incide sobre el cerebro está fragmentada en partes, y muchos sistemas empiezan a tratarla al mismo tiempo. A menudo, estas actividades modulares operan independientemente de nuestros procesos de verbalización conscientes. Eso no significa que se trate de procesos «inconscientes» o «preconscientes», ni que estén fuera del alcance de nuestra capacidad de aislarlos y entenderlos. Al contrario, son procesos que funcionan paralelamente a nuestro pensamiento consciente y que intervienen en la estructura consciente del mismo de tal forma que se pueden identificar. En lo que respecta a la experiencia consciente, es frecuente que nos preguntemos por la procedencia de determinadas ideas cuando aparecen en nuestra conciencia sin que sepamos cómo. Por ejemplo, cuando al escribir se nos ocurre súbitamente la manera exacta de expresar una idea. ¿De dónde procede una idea súbita como ésta? Aparentemente, no lo sabemos. Parece que tenemos acceso únicamente al producto de estos módulos cerebrales, pero no al proceso mismo.

En efecto, estas unidades modulares relativamente independientes pueden producir y ejecutar comportamientos reales. Normalmente nos encontramos a nosotros mismos involucrados en actividades cuya procedencia ignoramos. Todo puede ocurrir, desde comer alimentos atípicos hasta establecer relaciones insólitas; en cierta medida, estas actividades infrecuentes parecen surgir de la nada. Mediante experimentos como los que describimos en este libro, hemos empezado a comprender la mecánica que hace posible que se produzcan estos comportamientos.

La idea de que la mente está organizada de forma modular indica que parte de nuestro comportamiento podría considerarse caprichoso, y que un comportamiento concreto podría no estar originado en nuestros procesos conscientes de pensamiento. Cuando comemos por primera vez ancas de rana o decidimos leer un tipo de libro diferente, por ejemplo, no sabemos a ciencia cierta cuál es el origen de estos comportamientos. Pero, como veremos, los seres humanos nos negamos a interpretar tales acciones como algo caprichoso, y esto se debe a que, aparentemente, estamos dotados de una inagotable capacidad para producir hipótesis sobre las causas por las que actuamos de las distintas maneras en que lo hacemos.

En resumen, puede decirse que nuestra especie posee un componente cerebral especial que denominaré «intérprete». Aunque en cualquier momento de nuestros estados de vigilia puede ocurrir un comportamiento ocasionado por uno de esos módulos, nuestro «intérprete» se acomoda y construye al instante una teoría para explicar por qué se ha producido ese comportamiento. Aunque el intérprete no conozca realmente el impulso que nos llevó a consumir ancas de rana, puede formular una hipótesis como «Me impulsó el deseo de conocer la comida francesa». Esta capacidad especial, que reside en un componente cerebral localizado en el hemisferio dominante, el izquierdo en el caso de los humanos diestros, revela la importancia que tiene la realización de conductas a la horade formar distintas teorías sobre el yo. La dinámica existente entre nuestros módulos mentales y nuestro módulo «intérprete» del cerebro izquierdo es la responsable de la generación de las creencias humanas.

Una vez que nos damos cuenta de la firmeza con que el comportamiento gobierna nuestras creencias y de cómo se forman éstas, comprendemos la importancia que tiene la estructura social circundante. Así, evitamos aquellos ambientes que pueden llevar a algunos de nuestros módulos mentales a producir acciones que, a largo plazo, puedan dañar la solidez de nuestros sistemas generales de creencias. Por ejemplo, la creencia en la fidelidad matrimonial podría ponerse seriamente en duda si, en una fiesta navideña, uno sucumbe a los atractivos requerimientos amorosos de alguien que no es nuestro cónyuge. Es decir, en casos como éste, las posibles recompensas derivadas del ambiente pueden activar alguno de los módulos mentales, que a su vez produciría un comportamiento. Una vez puesto en práctica, hay que interpretar ese comportamiento; y la nueva creencia sobre el valor de la fidelidad a que da lugar dicha interpretación puede estar en verdadera contradicción con otros valores del sistema de creencias. En la medida en que entendamos este proceso, adquiriremos una mayor comprensión de las bases biológicas de los fenómenos culturales.

Las investigaciones sobre el cerebro humano parecen llevarnos a la conclusión de que nuestros cerebros están organizados de tal forma que en los mismos coexisten muchos sistemas mentales, constituyendo lo que puede considerarse una especie de confederación. Los descubrimientos de estas investigaciones sugieren, además, que en zonas específicas del cerebro humano es posible realizar ciertos cómputos que convierten a nuestra especie en la única capaz de hacer inferencias abstractas de orden superior, y que esta capacidad especial de hacer inferencias posibilita la singular capacidad que poseemos de interpretar la pluralidad de nuestro yo. Estas interpretaciones de nuestro yo pueden dar lugar a la formación de verdaderas creencias. La adquisición de creencias es un mecanismo

del que se sirve nuestra especie para evitar mantener una simple relación refleja con las recompensas y castigos de la sociedad. Al mismo tiempo, nuestro cerebro interpretativo, generador de nuestras creencias, puede verse abrumado por la magnitud y frecuencia de esas recompensas y, cuando esto suceda, puede sucumbir a nuevas creencias que se verá impulsado a formar como consecuencia de la necesidad refleja de interpretar las acciones suscitadas por el medio social.

La percepción personal que tienen los humanos de su comportamiento, es decir, la idea de que actúan por su propia voluntad, está relacionada con los principios de funcionamiento del cerebro que acabamos de describir. Los humanos civilizados e instruidos del siglo XX creen —algunos incluso en contra de sus conocimientos esenciales de física moderna- que son agentes que actúan libremente. Hasta los hábitos se interpretan como producto del libre albedrío. Albert Einstein creía que, desde el punto de vista psicológico, actuaba libremente, si bien intelectualmente estaba comprometido con la idea de un universo mecánico. La creencia de que obramos por nuestra propia voluntad es tan poderosa que debe surgir de algún rasgo fundamental de la organización del cerebro humano. En mi opinión, esta creencia se sigue de la teoría modular de la mente que voy a exponer en este libro. Como continuamente interpretamos los comportamientos producidos por módulos cerebrales independientes como comportamientos producidos por el yo, llegamos a la conclusión de que actuamos libremente, conclusión que en gran medida es ilusoria. Yo sostendré, en cambio, que es esta inevitable percepción personal la que descubre que nuestras creencias se alteran de la forma en que lo hacen en respuesta a diversas fuerzas sociales.

En este libro exploraré con el lector los datos científicos que me han llevado a sostener estas opiniones. Gran

parte del mismo trata de los apasionantes descubrimientos sobre los mecanismos mentales que, gracias a nuestros estudios sobre el cerebro, han llegado a comprenderse mejor. Pero espero ir más allá de esta historia y situar esos descubrimientos en un contexto social más amplio, un contexto que, por supuesto, interactúa con la naturaleza física de nuestra especie, pero que por lo general no se ha tenido en cuenta.

La adquisición y el mantenimiento de creencias sociales son, como todos los fenómenos cognitivos fundamentales, un producto de la organización del cerebro humano, exactamente del mismo modo que lo son nuestros deseos de comer, de dormir y de hacer el amor. Estas propiedades específicamente humanas de la mente son el resultado de la organización del cerebro y, como tales, revelan que muchas de las diferencias aparentes entre las creencias culturales son el producto inevitable del modo como el cerebro interpreta el gran número de ambientes que hay en el mundo. Sabemos que los cuatro mil millones de personas, más o menos, que hay en el mundo tienen el mismo tipo de cerebro, y que nuestra especie ha dispuesto del mismo durante al menos cuarenta mil años. Se trata de un hecho asombroso, un hecho que me hace pensar que, una vez que desentrañemos la naturaleza del cerebro, comprenderemos los mecanismos de la formación de creencias y, como consecuencia, seremos más tolerantes con la diversidad de las mismas entre los hombres.

La comprensión de los procesos cerebrales que conducen a la formación y mantenimiento de los sistemas de creencias nos proporciona una base para entender con mayor claridad los fundamentos de la vida mental humana. Pero, para acompañarme en el viaje a través de las investigaciones sobre el cerebro que me han conducido a las ideas que acabo de exponer, es importante que los lec-

tores conozcan bien ciertos principios fundamentales de la organización cerebral, de los cuales paso a ocuparme inmediatamente en el capítulo 2. Una vez comprendidos estos principios, el descubrimiento de los problemas más importantes relativos al modo como el cerebro elabora y produce realmente los conocimientos y las creencias se convertirá en un placer para el lector.

La comprensión de la relación del cerebro con los aspectos fundamentales de la naturaleza humana plantea profundas cuestiones relativas al conocimiento de la estructura y función de esa peculiar masa de tejido biológico. La mayoría de los científicos considera el cerebro como infinitamente modificable y siempre dispuesto a responder a los acontecimientos ambientales. Para ellos, la mente de un ser humano recién venido al mundo está completamente vacía, pero preparada para que el medio cultural pueda rellenarla y estructurarla. Los que piensan de este modo miran con recelo los descubrimientos que parecen indicar que el tejido cerebral posee propiedades establecidas de antemano que imponen características específicas a la mente. Para tener un mayor conocimiento acerca de cómo se relacionan los principios de la organización cerebral con los aspectos cognoscitivos de nuestra mente, debemos informarnos primero sobre ciertas características fundamentales del desarrollo del cerebro y sobre sus correlatos psicológicos. Resumiendo, hay que saber cómo está constituido el tejido cerebral, cómo funciona y cómo responde a la experiencia, y qué límites establece la naturaleza de este tejido sobre cualquier intento de teorizar acerca de nuestra especie.

El modo en que estas cuestiones podrían responderse se me empezó a revelar hace unos 25 años, cuando leí un artículo sumamente interesante escrito en la revista Scientific American por mi futuro mentor, Roger W. Sperry1. En aquella época yo era un estudiante del Dartmouth College. Sperry, profesor de psicobiología del Instituto de Tecnología de California (Caltech), era uno de los científicos del cerebro más famosos del mundo. El artículo de Sperry exploraba cómo crecen los circuitos nerviosos hasta llegar a zonas concretas del cerebro: por ejemplo, cómo encuentra su ruta el nervio óptico de una rana, encargado de transmitir información acerca de lo que ve el animal, desde el ojo hasta la conexión cerebral apropiada. Cualquier explicación de estos problemas debe apoyarse en nuestro conocimiento sobre el modo como está estructurado el cerebro por el código genético y las limitaciones que tiene el mismo para cambiar en respuesta a los acontecimientos ambientales. La comprensión de cómo crecen los nervios es uno de los aspectos fundamentales que hay que entender en la investigación sobre el cerebro.

Los sesenta fueron años dorados para la ciencia norteamericana, cuando prácticamente cualquier programa razonable de investigación podía obtener fondos. Convencido de que mi tentativa tenía muy pocas probabilidades de éxito, escribí a Sperry para pedirle un trabajo de verano en el que poder ocuparme en el intervalo entre mis años de primer y segundo ciclo en la Universidad. Mi casa estaba muy próxima a Caltech, lo cual me parecía

ideal. Para sorpresa mía, Sperry me contestó diciendo no sólo que lo que yo pedía era posible, sino que además la Nacional Science Foundation concedía becas de verano a los estudiantes que estaban en mi situación. No podía creérmelo, pero, no obstante, acepté el ofrecimiento. Las diez semanas de ese verano en Caltech resultaron ser las diez semanas más decisivas de mi vida.

El clima del laboratorio era extraordinariamente cordial, y Sperry, que ya entonces era una especie de leyenda, me recibió con toda cortesía. Entre los ayudantes del laboratorio, yo era el de rango más bajo; pero, como en cualquier gran laboratorio, había otros compañeros que siempre estaban dispuestos a echarle a uno una mano, y que me instruyeron no sólo sobre el cerebro, sino sobre la ciencia en general. Tuve la suerte de conocer al psicólogo joven más entusiasta y concienzudo de cuantos allí había, Mitchell Glickstein, quien después de pasar varios años en universidades norteamericanas, es ahora profesor del University College de Londres. Glickstein estaba realizando un magnífico trabajo en Caltech, pero era una de esas personas entrañables que dedicaba generosamente su tiempo a enseñar a los neófitos como yo. Glickstein era, y todavía es, maravilloso como científico y como profesor, y yo aprendí mucho de él.

Mi primera tarea consistió en familiarizarme con los primeros experimentos realizados por Sperry. Pronto aprendí que cualquier persona instruida en biología se queda estupefacta ante los que mantienen la teoría de la tábula rasa, según la cual todos los cerebros son más o menos iguales al nacer. Esa idea, consagrada en la mentalidad norteamericana por la Constitución, fue vigorosamente sostenida en la comunidad intelectual por el psicólogo John B. Watson. Watson fue el portavoz reconocido de la reacción norteamericana contra el racionalismo alemán y la fragilidad de los datos introspectivos como

pruebas científicas 2. Las opiniones de Watson se basaban en dos consideraciones. De acuerdo con la primera, la manipulación de las relaciones entre conductas y refuerzos puede ser un poderoso determinante del comportamiento, sobre todo del comportamiento de los animales. La segunda sostenía que la interacción con el ambiente proporciona al sistema nervioso su estructura. Watson formuló esta teoría en un momento en el cual las ciencias del cerebro estaban en sus comienzos y los científicos apenas si sabían cómo está construido el mismo. En realidad, podría argüirse que cuando Watson propuso sus teorías, lo hizo animado por la investigación biológica de su tiempo, que también parecía pensar que la plasticidad del cerebro era ilimitada. Por entonces, a comienzos de los años treinta, la opinión aceptada entre los científicos del cerebro era la de que «la función precede a la forma», que un brazo tenía que usarse como brazo antes de que las neuronas que lo inervan se especializaran para ese propósito. En resumen, el parecer biológico era equivalente al parecer psicológico, según el cual el organismo recién venido al mundo era como una pizarra en blanco.

El trabajo de Sperry sirvió para aclarar las cosas. Sperry demostró que las intrincadas redes neuronales que gobiernan y controlan las extremidades se establecen durante el desarrollo, que se forman y se construyen bajo el riguroso control de mecanismos genéticos. Las vías de estos circuitos quedan fijadas al principio de la vida, y sus capacidades se delimitan y se definen estrictamente en ese momento. De este trabajo sobre el sistema nervioso periférico se desprende la idea de que esto mismo ocurre por lo que respecta a muchos de los circuitos centrales del cerebro, de tal forma que la naturaleza individual de cada persona refleja su organización neural subyacente, genéticamente prescrita. El modo como el cerebro adquiere su carácter psicológico depende no sólo de acontecimientos

ambientales fortuitos sino también de su arquitectura innata.

Esta investigación comenzó en la Universidad de Chicago, cuando Sperry, siendo todavía estudiante, puso en cuestión las opiniones de su famoso mentor, Paul Weiss³. El ataque de Sperry a las opiniones de Weiss consistía en sostener que los nervios se desarrollan según rutas predeterminadas hasta alcanzar sus puntos de destino. Así, en contra del parecer de Weiss, los nervios se desarrollan hasta alcanzar un miembro determinado de antemano por el sistema nervioso central mediante mecanismos controlados genéticamente. Los nervios no se desarrollan de forma aleatoria y posteriormente adquieren su estructura periférica en función de lo que hacen; más bien, lo que ocurre es que están predestinados a realizar tareas concretas y son capaces de encontrar los tejidos periféricos apropiados a los que tienen que conectarse. Por ejemplo, si se desvía experimentalmente, mediante una manipulación quirúrgica, el nervio de la pata trasera izquierda de una rata hacia la pata trasera derecha, ésta empieza a comportarse como si fuera la pata izquierda. Y la situación permanece así durante el resto de su vida4.

En otros experimentos clásicos, Sperry cortó el nervio óptico de un pez de colores y estudió cómo volvía a crecer de manera específica hasta alcanzar los puntos de conexión apropiados en el cerebro. En este tipo de experimentos, en lugar de estudiar la especificidad del crecimiento de los nervios desde el sistema nervioso central hasta la periferia, Sperry evaluaba la especificidad del crecimiento de los nervios desde la periferia hasta el sistema nervioso central, sede de importantes procesos psicológicos. El proceso de regeneración era sumamente exacto, y en el mismo se podía observar cómo determinados puntos de la retina, representados por neuronas concretas, encuentran su ruta hasta alcanzar zonas específicas

del sistema visual del pez. Si las neuronas eran desviadas hacia un área que no les correspondía, crecían a través de zonas extrañas y encontraban el área apropiada del cerebro (véase la figura 2.1).

El modelo teórico de Sperry, que hoy en día ha sido verificado mediante miles de ejemplos, se funda en el principio de que «la forma precede a la función»⁵. Actualmente, hay varias teorías acerca del mecanismo biológico exacto por medio del cual un nervio reconoce el lugar ha-

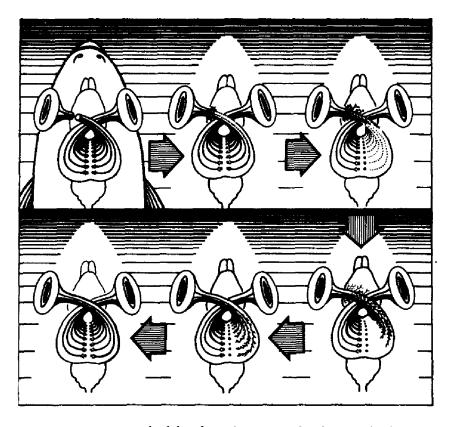


FIGURA 2.1. Un ejemplo del trabajo de Sperry sobre la especificidad neuronal. Las neuronas procedentes del ojo del pez que han sido cortadas vuelven a crecer hasta alcanzar en el cerebro exactamente los lugares que les corresponden, evitando las zonas que no les corresponden (comiéncese en la parte superior izquierda y síganse las flechas).

cia el que tiene que crecer. La identificación de este mecanismo es un problema todavía por resolver⁶. No obstante, hoy en día nadie duda de que el sistema neuronal se desarrolla bajo un estrecho control genético. La organización personal del cerebro también está sometida a un estricto control genético y no se altera fácilmente por la influencia ambiental. Sperry demostró que las conexiones neuronales específicas se forman bajo la dirección del genoma y no bajo la del ambiente. Todos los que trabajamos en el laboratorio de Sperry tenemos un profundo respeto por el componente genético de nuestras vidas, un respeto que adquirimos estudiando el problema, analizando los datos y discutiendo sobre el contexto biológico.

También es importante darse cuenta de que, si bien es cierto que un sistema biológico en desarrollo, como el sistema nervioso, está sometido a un estrecho control genético, dicho control no es, sin embargo, absoluto. En torno al organismo surge un enorme número de influencias ambientales: fuerzas externas procedentes de la madre, así como del medio físico externo. La fuerza de la gravedad hace que el agua fluya cuesta abajo, pero el agua puede ser desviada de un curso aparentemente predestinado mediante la colocación apropiada de un peñasco. En el contexto biológico del cerebro, dado nuestro conocimiento actual del tema, probablemente es más apropiado decir que la mayor parte de estas influencias sigue sin conocerse, aunque no cabe duda de su existencia. La comparación de los cerebros de hermanos, quizás incluso de gemelos idénticos, realizada al practicarse autopsias, revela la existencia de enormes diferencias morfológicas: las variaciones en la microestructura de la organización celular son asombrosas. Dado que los cerebros de personas estrechamente emparentadas son diferentes, no es difícil imaginar la extensa amplitud de variación que habrá en el resto de la población. Aunque todos tenemos un hemisferio izquierdo y otro derecho, un mesencéfalo y un córtex visual, la proporción de células en cada uno de estos sistemas y el modo como están interconectadas varía de unas personas a otras.

Sería interesante considerar la posibilidad de que las variaciones cerebrales que existen entre los individuos fuesen la razón fundamental de las variaciones psicológicas que se dan entre los adultos normales. Por ejemplo, si bien todos responden a los refuerzos, algunas personas responden con mayor intensidad. ¿Podría reflejarse esta diferencia de intensidad en una proyección diferencial de neuronas hacia la parte del cerebro donde están los mecanismos químicos responsables de la intensidad de respuesta a los refuerzos? Dicho en otros términos: ¿tienen las personas que son muy sensibles al halago, o que aprecian mucho los bienes materiales, cerebros con una proyección neuronal mayor de lo normal en el sistema cerebral responsable del refuerzo?

Sin cuestionar que los factores genéticos proporcionan el armazón fundamental del crecimiento y el desarrollo del sistema nervioso, actualmente se reconoce que hay determinados períodos a lo largo del desarrollo durante los cuales la organización del cerebro es modificable. Estos períodos de especial sensibilidad al cambio son cortos y sólo se conocen bien en algunas especies y en relación con determinados tipos de experiencia. Algunos de los mejores ejemplos proceden de estudios sobre el sistema visual del gato. Los neurofisiólogos de Harvard David Hubel y Torsten Wiesel describieron, en una investigación galardonada con el premio Nobel, la arquitectura celular normal de la corteza visual7. Hubel y Wiesel descubrieron que tanto los gatos adultos como los recién nacidos tienen una organización neural idéntica, consistente en proporciones predeterminadas de células que responden a ciertas orientaciones de barras oscuras y cla-

ras que se presentan en el campo de visión real del gato. Las células responden a las líneas de luz inclinadas con una determinada orientación: algunas células responden a líneas de luz orientadas hacia la izquierda, otras lo hacen a las orientadas a la derecha; hay células que responden a las líneas orientadas verticalmente, mientras que otras lo hacen a las orientadas horizontalmente; otras células, en fin, responden a diversas orientaciones situadas entre estos extremos. Otras características del sistema visual incluyen el número de células que reciben información procedente de un solo ojo en comparación con el número de las que la reciben de ambos.

Desde los estudios pioneros llevados a cabo en los años 60, varios investigadores han mostrado que en las primeras semanas de vida de un gato hay un período de tiempo durante el cual la exposición a un ambiente visual anormal puede cambiar la proporción de células que se ocupan de la detección de líneas luminosas de una orientación concreta. Así, si durante las primeras tres semanas de vida de un gatito, éste ve solamente líneas orientadas verticalmente, el número de células que responden a líneas con esa orientación vertical es mayor cuando el gatito es sometido a prueba a las diez semanas de vida. Además, las líneas o los filos presentados con orientaciones distintas a la vertical no suelen provocar respuesta alguna. Si estas manipulaciones ambientales se realizan cuando el gatito tiene algunas semanas más de vida, por ejemplo a las diez semanas de vida, no parecen producirse efectos sobre la organización normal del sistema visual. El período crítico ha terminado. El sistema cerebral parece fijado para el resto de la vida del gato (véase la figura 2.2).

Otro ejemplo de este tipo de fenómenos, uno de mis favoritos, está sacado del trabajo de Fernando Nottebohm⁸, profesor de la Rockefeller University. Una cría macho de pájaro aprende su canto de otro macho adulto.

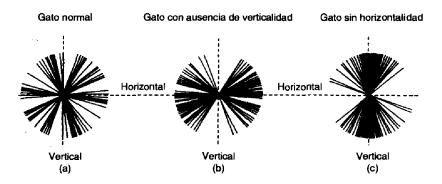


FIGURA 2.2. Orientación de las líneas que provocan una respuesta de las células de la corteza visual de un gato bajo 3 condiciones. En (a) se muestra la distribución normal de respuestas. En (b) se muestran las respuestas de un gato criado en un medio con líneas horizontales únicamente, y en (c) las respuestas de un gato que sólo ha visto líneas verticales en su período de crianza. La organización del cerebro puede modificarse al principio de la vida. En cambio, estos cambios cerebrales no son posibles si la exposición a las condiciones experimentales tiene lugar a las 10 semanas de vida del gato.

Si la cría se ve expuesta al canto en cualquier momento antes de cumplir un año de vida, aprende el canto apropiado. Pero si no oye el canto hasta pasado el primer año, nunca podrá aprenderlo. El período crítico para aprender el canto de los pájaros dura, por tanto, un año. Este período de aprendizaje no es muy distinto del que se da en el caso de los humanos en relación con el desarrollo del lenguaje y el habla. Si un niño pequeño no adquiere el lenguaje antes de un momento determinado, su desarrollo lingüístico no tendrá lugar con normalidad.

Otra manera de estudiar la relación entre el desarrollo del cerebro y el desarrollo psicológico consiste en examinar los paralelismos entre el orden de adquisición de las habilidades infantiles y el deterioro de las mismas en adultos que han sufrido una lesión. Pérdidas paralelas pueden indicar que las áreas del cerebro de los adultos en

las que la lesión ocasiona la pérdida de una función concreta son las mismas áreas del cerebro que tienen que madurar en el niño para cimentar esa función. Un ejemplo puede aclarar las cosas.

Se ha demostrado que en las crías de ratas hay un área del cerebro, llamada giro dentado del hipocampo, que es inmadura durante el primer mes de vida9. Cuando se ha estudiado detenidamente a estos animales, se ha observado que las crías de rata se comportan como ratas adultas que han sufrido lesiones en dicha área. En los humanos este área, el giro dentado, también madura después del nacimiento. Las habilidades comportamentales correspondientes del niño de preescolar no aparecen plenamente desarrolladas, al igual que ocurre en la rata, hasta que maduran las áreas cerebrales críticas. Así pues, hay un paralelismo en las habilidades que son posibles en ausencia de una estructura, ya sea porque todavía no ha madurado, o porque la estructura ha sufrido una lesión. Estos paralelismos indican que determinadas zonas del cerebro tienen que alcanzar un nivel de maduración dado antes de que el comportamiento que median pueda aparecer. El período clave parece estar entre los 5 y los 7 años de edad.

El descubrimiento de este tipo de mecanismos es interesante desde varios puntos de vista. En primer lugar, los datos demuestran que la entrada ambiental puede modificar de hecho la disposición genética de un organismo. No obstante, y éste es el reverso de la moneda, las condiciones bajo las que pueden efectuarse tales cambios son limitadas y de muy corta duración. Ambos aspectos son de la máxima importancia.

El cerebro en desarrollo tiene otras características importantes que hay que tener en cuenta. El ritmo de desarrollo varía de un cerebro a otro; por ejemplo, a la edad de un año Billy puede tener más células corticales mieli-

nizadas que Bobby. La mielina es la sustancia que envuelve las neuronas, formando una vaina que circunda a cada una de las mismas. Esta vaina cambia la microestructura de la neurona y le permite transmitir impulsos eléctricos de forma más eficaz. Sin esta vaina la neurona es lenta en sus transmisiones, algo a tener en cuenta cuando nos ocupamos de un misterioso aspecto del desarrollo del cerebro: la mielinización del córtex. Gran parte de la actividad cognitiva humana tiene lugar en el córtex cerebral. Para que éste opere eficazmente, la mielina debe envolver las neuronas. Sin embargo, la mielinización se desarrolla lentamente¹⁰. Algunas regiones del cerebro no aparecen completamente dotadas de mielina hasta la tercera década de la vida. Este hecho plantea de nuevo interesantes cuestiones sobre los correlatos cerebrales del desarrollo de los procesos psicológicos.

Los psicólogos del desarrollo suelen decir que, para que se produzca la cognición normal, tienen que atravesarse varias etapas de desarrollo cognitivo según un orden determinado. La capacidad A debe estar disponible antes de que la capacidad B pueda madurar; B debe estar disponible antes de que C pueda madurar, etc. Psicólogos de las más diversas opiniones discuten sobre la naturaleza y características de cada una de estas capacidades mentales, pero todos tienden a dar por supuesto que cada paso debe completarse según un orden que le es propio. Como consecuencia de esta suposición, se elaboran y se discuten modelos psicológicos del desarrollo dando por supuesto que la unidad fundamental de construcción de la cognición es este proceso psicológico.

Una perspectiva biológica que también haga justicia al carácter singular de la experiencia psicológica podría argüir, en relación con el problema del proceso de construcción del conocimiento, que en el nivel psicológico no puede suceder nada mientras no estén conectadas y en

funcionamiento las áreas del cerebro de las que dependen los procesos psicológicos en cuestión. Exactamente del mismo modo que un ordenador de capacidad limitada no puede procesar más información de la que puede manejar con las unidades de memoria de que dispone, el organismo en desarrollo únicamente puede realizar tareas psicológicas hasta el nivel que le permita el soporte (hardware) neuronal operativo en cada momento. Cuando el organismo alcanza otro nivel de capacidad, podría argumentarse que el cerebro ha madurado, que se ha activado un mayor número de áreas corticales, o que se han vuelto más eficaces, haciendo posible una nueva capacidad psicológica. La pauta de mielinización diferencial del cerebro humano ofrece una posibilidad biológica que explique este avance en el desarrollo. El proceso de mielinización se produce con retraso, y madura únicamente en las áreas cerebrales que tienen una mayor responsabilidad en la cognición, lo que ocurre aproximadamente en el momento en que el niño pequeño adquiere una habilidad determinada.

Al fin y al cabo, todos los estudios realizados hasta la fecha han puesto de manifiesto otro principio importante del desarrollo del cerebro, según el cual las influencias ambientales afectan al cerebro sólo de forma negativa. Este hecho contrasta fuertemente con las afirmaciones sobre la importancia del ambiente en los primeros años de vida, la mayor parte de las cuales proceden de los propios investigadores del cerebro. El único momento de la historia natural de un organismo en el cual el cerebro opera con todo su potencial genético inalterado tiene lugar después de un nacimiento sin incidentes notables. Esta superficie neural íntegra, por así decir, se altera únicamente a causa de acontecimientos físicos que afectan al cerebro. Factores como lesiones en la cabeza, desequilibrios endocrinos y nutriciones defectuosas tienen todos

una influencia negativa. En contra de lo que muchos afirman, no hay datos convincentes que demuestren que un ambiente enriquecido pueda aumentar el poder del cerebro. La importancia de esta cuestión merece una consideración más detenida.

Muchos científicos se mostraron satisfechos cuando en los años sesenta, un grupo de biopsicólogos comenzó a presentar datos según los cuales las ratas criadas en un ambiente enriquecido tenían en la corteza un circuito neural más tupido y más complejo que las ratas del grupo de control¹¹. Estos autores afirmaban que los cerebros de las ratas experimentales eran superiores y más capaces de realizar tareas de resolución de problemas. Ouienes creen firmemente en la influencia del ambiente -una idea compartida por las personas que en mayor o menor medida son «propietarias» de los sistemas de enseñanza primaria y secundaria— se emocionaron muchísimo y utilizaron este nuevo «dato biológico» para abogar por un mayor control sobre el ambiente de los primeros años. En la retórica de los partidarios del control estaba implícita la idea de que se podían crear niños superdotados. Estas personas de mentalidad ambientalista abandonaron súbitamente su habitual desconfianza ante las afirmaciones biológicas según las cuales los límites de la capacidad de cada uno de nosotros están predeterminados, y en su lugar argumentaban que la capacidad del cerebro podía aumentarse, basándose en este dato biológico de dudosa validez.

Desde que comenzaron estos estudios, los experimentadores no han perdido su fe en este tipo de ideas sobre la mejora de las capacidades cerebrales, lo cual es normal. No obstante, la mayor parte de la comunidad neurobiológica es menos optimista. En primer lugar, los estudios en cuestión tenían y continúan teniendo un defecto de diseño fundamental. Se comparan los supuestos «animales

enriquecidos» con los «compañeros normales de camada». Pero sería más apropiado denominar «normal» lo
que se denomina «enriquecido» y «deprivado» lo que se
denomina «normal». Lo que los experimentadores hacen
es colocar un grupo de ratas en un ambiente lleno de juguetes y colores, que ellas mismas pueden manipular frecuentemente. En una palabra, los animales reciben estimulación; experimentan algo parecido a un ambiente
normal. En cambio, las ratas del grupo de control, las que
no reciben estimulación, permanecen en una pequeña
jaula, en un ambiente estrictamente controlado, y en
esencia llevan una vida carente de estímulos. Las líneasbase de cualquier experimento son relativas, y en este
caso la línea-base no lo era en realidad.

El segundo avance principal de la neurobiología del desarrollo que pone en cuestión la idea de que la experiencia intensifica el desarrollo cortical, es el descubrimiento de que el cerebro sobreinerva todas las áreas durante el proceso de desarrollo¹². Esto significa que si el área cerebral A envía proyecciones al área B, las proyecciones existentes en el cerebro del organismo en desarrollo pueden ser 7 veces más tupidas que las del cerebro adulto. Todavía no se sabe ni cómo ni por qué logran las neuronas establecer conexiones apropiadas en las áreas del cerebro correspondientes, si bien se sabe que el desarrollo del cerebro es rápido al principio y después reduce su ritmo.

Pero, como el desarrollo del cerebro es tan delicado, puede retrasar su ritmo antes de lo normal a consecuencia de una interrupción o una lesión. Este enlentecimiento prematuro se ha puesto claramente de manifiesto en la clínica. La lesión de cualquier hemisferio del cerebro durante la infancia causa una acentuada disminución del CI (Cociente Intelectual) verbal¹³. Esta conclusión se basa en la comparación de la escala verbal del CI de un niño que

ha sufrido una lesión y la escala verbal del CI de sus hermanos. Los niños que han sufrido una lesión presentan un grave deterioro en relación con sus hermanos, resultado éste que no se corresponde con el perfil familiar habitual que suele darse en el CI de hermanos.

Un importante aspecto de estos datos sobre el desarrollo del CI es el hecho de que el efecto perjudicial de una lesión en la cabeza durante los primeros años de vida es mucho mayor si la lesión tiene lugar antes del primer año de edad. Las lesiones que ocurren después de esta edad tienen un efecto menor sobre el CI verbal. Esta observación, que es un dato clínico bien asentado, revela otra característica compleja y muy curiosa del desarrollo del cerebro. El auténtico cerebro inmaduro se encuentra en un estado dinámico tan frágil que cualquier daño en la pauta de desarrollo del mismo da al traste con el potencial de desarrollo ulterior que posee. Aunque la lesión tiene lugar en un período en el cual se supone que el cerebro es más capaz de recuperarse por sí mismo, no es menos cierto que se trata también del período en el cual es más vulnerable a cualquier interrupción de su desarrollo normal. Al mismo tiempo, una lesión que tenga lugar en cualquier momento posterior al primer año de vida apenas tiene efecto sobre la inteligencia general, y afecta más directamente a habilidades específicas. Esto significa que las funciones especializadas de cada mitad del cerebro se manifiestan a una edad muy temprana y quedan irreparablemente dañadas o perdidas en caso de lesión.

Estos datos configuran una visión del cerebro como un mosaico de centros neurales que actúan interrelacionándose dinámicamente y de manera delicada durante los primeros años. A lo largo del desarrollo, las partes del cerebro que no se encargan del control de las habilidades cognitivas adultas intervienen muy activamente en el establecimiento de estos procesos cognitivos en áreas con-

cretas del cerebro. La actividad del cerebro es febril. Pero, con la misma rapidez con que comienza, esta actividad finaliza cuando las capacidades especializadas del adulto han alcanzado su estado final. Cuando el sistema cerebral llega a su madurez, los cambios que pueden producirse en sus capacidades quedan restringidos a la capacidad de aprender, la cual difiere de una persona a otra.

Después de los primeros años de desarrollo, en el período de la adolescencia, el cerebro queda neurológicamente establecido. Sus largos circuitos de conexión transmiten información de forma específica, y la lesión de los mismos causa daños permanentes. Esto no significa que sea imposible recuperar las funciones deterioradas. Sin embargo, el problema en casos de lesión radica en cuál es el mecanismo de recuperación. Es probable que las áreas del cerebro no lesionadas comiencen a regular la conducta afectada o perdida, lo cual sucede por lo general aplicando una nueva estrategia de comportamiento. De este modo, lo que parece una recuperación del cerebro no es una recuperación del tejido lesionado, sino una adaptación del tejido intacto. Esta es la visión pesimista. Algunos tienen mayores esperanzas en la neurociencia; yo, no.

Hasta aquí hemos considerado aspectos relativos al desarrollo del cerebro. Ahora bien: ¿Cómo está organizado el cerebro maduro que se ha desarrollado con normalidad? ¿Cuál es la lógica estructural que le permite llevar a cabo el tipo de tareas que los humanos realizamos con tanta destreza?

Cuando, al principio de los años sesenta, comencé a investigar sobre el cerebro, éste era considerado un órgano más sencillo de lo que ha demostrado la investigación subsiguiente. Por entonces, se asumía que las vías sensoriales transmitían información sensorial al córtex, concretamente a las áreas de asociación, y que, una vez en estas áreas, la información se combinaba con otros proce-

sos para organizar mensajes neurales, los cuales eran enyiados a las áreas motoras o de respuesta del cerebro¹⁴. Con pocas excepciones, tanto en la ciencia del cerebro como en gran parte de la psicología, predominaba la mentalidad propia del modelo «estímulo y respuesta». La perspectiva psicológica estaba estrangulando el ámbito de los estudios cognitivos, mientras que la perspectiva biológica permanecía estancada en espera de nuevas técnicas. Estas técnicas se desarrollaron y, actualmente, después de miles de estudios, han revelado claramente cómo está organizado el cerebro adulto¹⁵. A lo largo de los últimos años se han realizado avances sumamente importantes en la comprensión del cerebro adulto.

Se ha dicho que los avances en la investigación del cerebro dependen principalmente de las técnicas de tinción. Al principio de los años setenta se desarrollaron nuevos tintes químicos que permitían el rastreo más minucioso de las vías neuronales; gracias a estos nuevos tintes se descubrieron nuevas relaciones estructurales. Este descubrimiento, combinado con una batería de técnicas neuropsicológicas en continua evolución, hizo que saliese a la luz la nueva lógica de la organización del cerebro.

Hasta ahora el cerebro era considerado como un sistema integrado y unitario que daba lugar a un proceso cognitivo unificado. La información sensorial se proyectaba en una parte del cerebro que correspondía a cada una de las modalidades sensoriales. En el caso de la visión, por ejemplo, al llegar al cerebro, la información se elaboraba en las áreas de asociación visual; desde éstas se enviaba de alguna manera un mensaje al sistema motor, delimitado igualmente de forma discreta, el cual se encargaba de dar la respuesta apropiada. La información sensorial se analizaba cada vez en mayor profundidad en cada una de las fases por las que iba pasando. Así, en la primera fase del proceso visual, las células cerebrales res-

pondían únicamente a estímulos visuales sencillos y rudimentarios, como bordes o ángulos. A medida que las células eran estimuladas a niveles más profundos del sistema visual del cerebro, los cómputos posibles eran más complejos y se generaban respuestas a características más específicas del mundo visual. Incluso se llegó a proponer la existencia de un tipo de células situadas en alguna zona de las áreas visuales superiores que responderían a cosas tan específicas como dibujos de manos, de cepillos o de caras; de ahí que llegaran a ser conocidas como «células abuela», o células que respondían específicamente a estímulos tan concretos como nuestra abuela.

Con la ayuda de nuevos tintes y otras técnicas, se descubrió que la información visual primaria que llega al cerebro desde una superficie sensorial como la retina se proyectaba, en realidad, sobre diversas zonas del cerebro. Es cierto que había proyecciones sobre áreas primarias ya reconocidas como tales. Pero las nuevas tinturas de células revelaron la existencia de importantes proyecciones secundarias (véase la figura 2.3). El descubrimiento de estas nuevas proyecciones llevó a plantear cuestiones como si los animales podrían ver en caso de que se destruyeran las proyecciones primarias, dejando intactas únicamente las áreas de proyección secundarias. Se llevaron a cabo experimentos con toda clase de animales, y en humanos se observaron los efectos de lesiones naturales sobre el sistema visual primario. Los resultados fueron sorprendentemente uniformes. Los animales podían ver estímulos complejos sin sus sistemas visuales primarios. La primitiva noción de una vía lineal de información sensorial. que se va transformando en construcciones progresivamente más complejas, hasta finalizar en la percepción de un objeto concreto, tuvo que revisarse. La organización del cerebro estaba estructurada de tal modo que el procesamiento de la información se producía con un alto grado

de redundancia. Actualmente, se considera que la información sensorial se representa de forma dispersa en módulos de procesamiento separados y de algún modo independientes¹⁶. Sigue sin conocerse el mecanismo efectivo mediante el cual vemos a nuestra abuela, tanto en la vida real como mediante el ojo de la mente. En lo que ahora nos atañe, lo importante es darse cuenta de que el cerebro no está organizado como un sistema unitario y monolítico, con cada parte conectada a las demás de acuerdo con algún tipo de disposición jerárquica. Resumiendo, hoy en día parece claro que el procesamiento de la información, además de ser serial, es en gran medida paralelo.

Mientras los anatomistas descubrían la complejidad de la arquitectura fundamental del cerebro, los neuroquí-

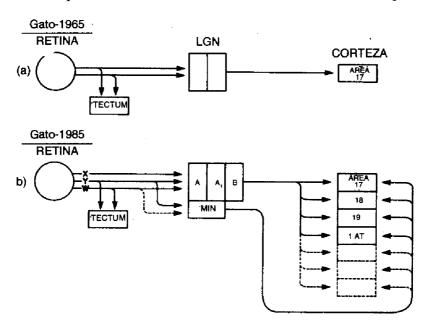


FIGURA 2.3. En (a) se representa el enfoque jerárquico de la organización del sistema visual. En los últimos años se ha sustituido este enfoque por el que aparece en (b), en el cual se representa la multiplicidad del sistema visual, con las fibras aferentes que se proyectan simultáneamente sobre muchas zonas del cerebro.

micos sacaban a la luz un gran número de sustancias químicas específicas que permitían a una neurona «hablar» a otra¹⁷. Segregadas por el extremo axonal de las neuronas, estas sustancias cambian el ambiente químico interno y externo de las neuronas advacentes. Este cambio químico es el que permite al mensaje neuronal pasar de una neurona a otra. Las modernas investigaciones sobre el cerebro muestran que determinadas neuronas responden a ciertos tipos de sustancias, llamadas neurotransmisores, y no a otros. Como consecuencia de estos complejos hallazgos, actualmente se reconoce que, además de diversas representaciones sensoriales, existen múltiples sistemas químicos. Por otra parte, es casi seguro que cada sistema químico esté implicado en funciones específicas en regiones determinadas del cerebro. La enfermedad de Parkinson es un ejemplo que hace al caso, ya que se debe a una deficiencia química específica en una región concreta del cerebro.

Igualmente fascinantes han resultado otros hallazgos neuroquímicos que se han producido en los últimos años. Estos descubrimientos tienen que ver con los sistemas químicos que regulan el dolor, el placer, y quizá también actividades tan fundamentales como puede ser el sueño18. Uno de estos descubrimientos es el de los famosos opiáceos llamados «endorfinas», que produce el cerebro mismo y son cruciales para el bienestar del cuerpo. Estas sustancias se activan cuando el cuerpo está en estado de tensión, y sirven para frenar el dolor que, en su ausencia, nos provocaría dicho estado. No cabe duda de que sin estas sustancias sentiríamos más dolor, como lo ponen de manifiesto los efectos de una droga llamada naloxona, la cual bloquea la acción de estos opiáceos producidos por el cerebro. Si se administra naloxona después de realizar un intenso esfuerzo, o después de un estímulo doloroso,

aumenta considerablemente el malestar que se experimenta.

Estos avances de la investigación sobre el cerebro y campos afines son de la mayor importancia para comprender de qué modo funciona el cerebro; cualquier lector interesado debería estudiarlos más a fondo si quiere conocer mejor los numerosos pormenores que aquí pasamos por alto. En este libro sólo pretendo que mis lectores tengan conocimiento de su existencia. Estos descubrimientos nos indican que ciertos mecanismos físicos identificables del cerebro gobiernan parte de nuestras experiencias más personales. Nos indican que los acontecimientos ambientales tienen efecto sobre nosotros porque provocan la acción específica del cerebro. Pero también nos indican que el cerebro mismo regula estas acciones, y puede disminuir o acrecentar su intensidad. Estas influencias moduladoras se manifiestan del modo más claro en el caso de los seres humanos, los cuales disponen de sistemas de creencias que les permiten ignorar las respuestas cerebrales primitivas a los acontecimientos dolorosos y placenteros ocasionados por el amhiente.

Según otro importante principio del cerebro, la cantidad de dolor y de placer que puede experimentar un organismo es finita. Los sistemas químicos que median estas funciones son finitos; alcanzan un punto máximo a partir del cual son inútiles los intentos de provocar más respuestas aumentando la estimulación. Finalmente, cabe resaltar que las diferencias individuales son enormes, especialmente en este ámbito. El nivel de dolor que tolera una persona puede suponer solamente un nivel de ligero malestar para otra, y lo mismo es cierto en lo que respecta al placer. Según muestran estudios recientes, estas variaciones individuales se deben muy probablemente a las diferentes capacidades estructurales que tiene el cerebro de

distintas personas. La capacidad de Fulano para producir endorfinas, o su capacidad de responder a las sustancias químicas producidas por el cerebro, puede ser diferente de la de Mengano. Las posibilidades explicativas son enormes cuando nos enfrentamos a tantas dimensiones de la personalidad.

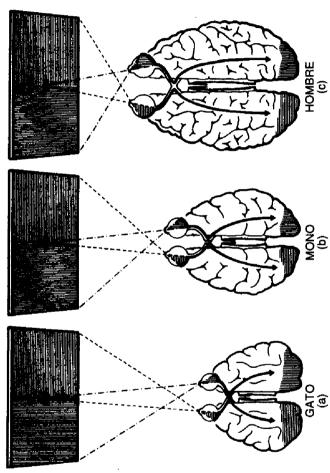
Mi breve lección sobre el cerebro ha terminado. Espero que haya servido para adquirir algunos conocimientos sobre la naturaleza de este órgano. Considero que estos apuntes sobre los mecanismos esenciales del cerebro son suficientes como indicio de lo que tenemos que saber acerca de la naturaleza fundamental del tejido nervioso. De lo visto hasta aquí se desprenden cuatro principios: (a) El cerebro se desarrolla bajo un estrecho control genético; (b) su arquitectura esencial puede modificarse únicamente muy al principio de la vida y sólo de forma negativa; (c) el cerebro está organizado de tal modo que dispone de módulos de procesamiento relativamente independientes que se extienden a todo lo largo y ancho del sistema cerebral, y (d) dispone de mecanismos de modulación de las influencias procedentes del ambiente que se basan en un complejo sistema químico capaz de gobernarse por sí mismo.

Aquel verano de 1960 me convencí de que dedicaría mi vida a la ciencia del cerebro, y muy especialmente en lo que atañe al comportamiento. Daba por sentado que terminaría mis estudios de preparación médica y que ingresaría en la facultad de medicina, como todo el mundo esperaba de mí. Sin embargo, de vuelta en Hanover, la vida no era igual que antes del verano. No podía quitarme de la cabeza la experiencia de aquel verano. Por fin escribí a Sperry preguntándole si podía pedir una beca para hacer los estudios de licenciatura con él. Sperry me contestó que estaría encantado y al verano siguiente fui admitido en Caltech gracias en gran parte a su apoyo.

No fue una tarea precisamente fácil explicar este cambio a mi padre, un médico apasionadamente entregado a la medicina. Mi hermano estaba entonces en la facultad de medicina y se esperaba que yo hiciera lo mismo. Mi padre, que había nacido en Italia, en el seno de una familia numerosa, pensaba que la medicina era una de las profesiones más honrosas a las que un hombre podía dedicarse. No dejaba de decirme que yo no me daría cuenta de ello hasta que realmente la hubiera practicado. Mi padre había ido a la facultad de medicina porque, una vez graduado en St. Anselm's, New Hampshire, el monsignor le había llamado y le había dicho que debía ir a Loyola, en Chicago. Aunque esto ocurrió a finales de junio, el monsignor le aseguró que haría todos los preparativos. Mi padre replicó que ni siquiera había estudiado química en el colegio universitario. A lo que el monsignor repuso: «¿Y eso qué importa? Aprende química durante el verano, y estudia también un poco de física. Los de Chicago creen que la sabes.» Y, guiñándole el ojo, añadió: «Harías mejor en no dejarme por mentiroso. También les dije que eras el séptimo de la clase. Claro que no les expliqué que en clase sólo erais siete.» Esta manera de obtener la admisión en la facultad de medicina ya no vale, pero no estoy completamente seguro de que los métodos actuales sean más acertados. A decir de todos, mi padre era un cirujano extraordinario. Cuando le informé de mi cambio de planes, se limitó a sonreír y a murmurar algo así como que ya se lo imaginaba. Y entonces dijo: «Estoy de acuerdo con lo que tú decidas hacer. Sólo que no entiendo por qué quieres ser Doctor, cuando siempre puedes pagarte uno.» Ahí me pilló.

Capítulo 3 Estudios sobre el cerebro dividido: los primeros años

Hay un axioma corriente en círculos biológicos según el cual, si se quiere entender el funcionamiento de algo, hay que estudiarlo funcionando en mal estado. Si pusiéramos a un científico delante de un aparato de televisión por vez primera y le pidiéramos que descubriese cómo funciona, la tarea le resultaría más fácil si la televisión no funcionara bien. Observando las oscilaciones de las imágenes, podría establecer inmediatamente hipótesis sobre su composición subyacente, y el científico estaría en camino de comprender cómo funciona.


Puede recurrirse al mismo enfoque para intentar comprender cómo produce y sostiene el cerebro la cognición normal del ser humano. El paciente con problemas neurológicos aquejado de una enfermedad que altere las relaciones cerebrales normales puede proporcionarnos importantes ideas sobre la organización fundamental del cerebro. Pero aún más importante es el hecho de que el estudio del cerebro desorganizado puede enseñarnos cuál es la organización normal del sistema cognitivo mismo. En consecuencia, los pacientes con problemas neurológicos constituyen una fuente de información en dos sentidos: por un lado, nos informan acerca de los principios del cerebro y, por otro, acerca de los principios cognitivos. Esta esfera de actividad científica se denomina oficialmente neurociencia cognitiva, y ha constituido mi principal ocupación durante los últimos 25 años. Gran parte de ese trabajo es fundamental para los argumentos que voy a exponer en este libro.

En pocas palabras, el estudio de pacientes con problemas neurológicos permite hacer afirmaciones sobre ciertas características cruciales de la organización del cerebro y de la cognición. Como he mencionado anteriormente, este tipo de investigaciones pondrá de manifiesto, en contra de nuestras intuiciones más profundamente arraigadas, que la conciencia no es un proceso unitario indivisible. En lugar de ello, lo que parece constituir la unidad personal de conciencia es el producto de un enorme conjunto de sistemas mentales distintos y relativamente independientes, que constantemente procesan información procedente tanto del ambiente interno como del externo. Dicho en términos más generales, cabría decir que la mente humana es una entidad más sociológica que psicológica.

Es decir, la mente humana se compone de un inmenso número de unidades elementales, muchas de las cuales son capaces de realizar actividades mentales sumamente complejas. Estas actividades pueden seguir su curso al margen de nuestro sistema verbal consciente. En otras palabras, en el cerebro se produce una gran cantidad de procesamiento de información con independencia de los procesos verbales. Además, la tarea de dirigir estos sistemas independientes es competencia de los sistemas computacionales, normalmente dominantes, de la mitad izquierda del cerebro.

De la investigación reciente también se desprende que esos sistemas computacionales del cerebro izquierdo están estrechamente vinculados con los procesos lingüísticos, pero no constituyen el sistema lingüístico en sí. Gracias al reconocimiento de estos aspectos de la organización del cerebro, se nos han ocurrido nuevas ideas sobre cómo se forman y mantienen fenómenos mentales tales como las creencias personales, y sobre cómo, gracias a su presencia reflexiva en la mente humana, pueden ignorarse los simples efectos de las contingencias externas de refuerzo. La mayor parte del trabajo que ha dado lugar a estas ideas procede del estudio del cerebro dividido, así que, como es lógico, voy a empezar mi exposición por el principio.

Aquel verano de 1960 en Caltech me enteré del otro descubrimiento de Sperry: el animal con el cerebro dividido. El término «cerebro dividido» se ideó para describir un procedimiento quirúrgico, practicado con gatos y monos, que consistía en separar el cerebro o hemisferio izquierdo del cerebro o hemisferio derecho. Los primeros experimentos que a principios de los años cincuenta realizaron Ronald Myers (que entonces era estudiante del laboratorio de Sperry) y el propio Sperry estaban destinados a aislar las vías neurales por medio de las cuales se integraba la información visual de un hemisferio con la del otro1. Para comprender lo que digo, el lector sólo tiene que fijarse la página que está leyendo. Fije su mirada en cualquier letra o palabra (figura 3.1). El cerebro humano, así como los cerebros del gato y del mono, está organizado de tal modo que la información visual situada a la izquierda del punto en el que se fija la mirada se provecta en el cerebro derecho, mientras que toda la información visual que queda a la derecha de ese punto se proyecta en el cerebro izquierdo. A pesar de todo, vemos el mundo visible como un todo integrado. Myers y Sperry

que se presentan en los dibujos. En (a) y (b) el gato y el mono miran a un punto. Todo lo que está a la izquierda del punto FIGURA 3.1. El sistema nervioso de los vertebrados está organizado aproximadamente del mismo modo en las 3 especies rebro después de una operación de separación. En el caso de los animales, se secciona el quiasma óptico para simplificar los marcado se proyecta en el cerebro derecho; y a la inversa, lo que está a la derecha, en el cerebro izquierdo. Lo mismo ocurre en el caso del hombre (c), y eso hace posible someter a prueba de forma independiente cada una de las mitades del ceprocedimientos de evaluación.

querían descubrir las vías neuronales responsables de esta integración, y las descubrieron, pero también descubrieron mucho más.

La franja que conecta las dos mitades del cerebro de los mamíferos se llama «cuerpo calloso». Se trata de un enorme tracto de fibras nerviosas (más de 200 millones de neuronas en el caso de los humanos), fácilmente accesible al seccionamiento quirúrgico. La separación de esta conexión, así como la de una estructura anterior más pequeña llamada «comisura anterior», aísla un hemisferio de otro. Aunque, en realidad, esto no es del todo cierto. Si, además, se secciona por la mitad una estructura llamada «quiasma óptico», la información visual presentada a un ojo sólo se proyecta en una de las mitades del cerebro. La sección del quiasma únicamente se lleva a cabo en animales (véase la figura 3.1).

Myers y Sperry descubrieron que, cuando se seccionaban el cuerpo calloso, la comisura anterior y el quiasma óptico, las discriminaciones visuales aprendidas por un cerebro no eran reconocidas por el otro. Por ejemplo, si un gato con el ojo derecho abierto y el izquierdo tapado aprendía que cada vez que presionaba un tablero que tenía encima un triángulo, recibía un poco de paté de hígado, más tarde, cuando se le tapaba el ojo derecho y se le destapaba el izquierdo para repetir la experiencia, no daba muestra alguna de recordar lo que anteriormente había aprendido. La información aprendida por el cerebro derecho no se transfería al cerebro izquierdo. Estudio tras estudio, los animales que tenían seccionadas las interconexiones neurales entre los hemisferios se comportaban como si tuvieran dos cerebros distintos; de ahí el término de «cerebro dividido»².

Pensemos por un momento en las consecuencias que esto puede tener en el caso de los humanos. Fije su mirada en un punto de la pared y mantenga la vista fija en él.

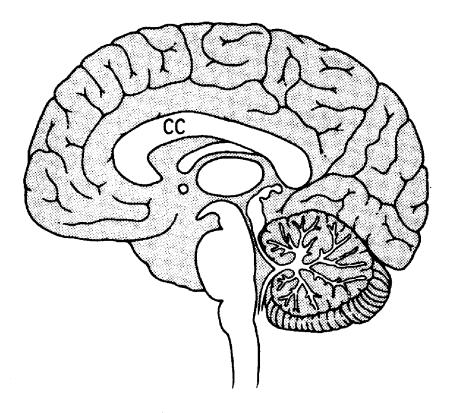


FIGURA 3.2. Vista sagital de un cerebro humano. El gran tracto de fibra (CC) es el cuerpo calloso. Esta estructura es la que secciona la neurocirugía para intentar controlar los casos de epilepsia que no han podido remediarse por otros métodos.

Imagine ahora que yo coloco dos objetos a la izquierda del punto de fijación, por ejemplo una manzana y una naranja. Mantenga la vista fija e imagine que voy de puntillas y coloco bajo la manzana un billete de 100 dólares, todo lo cual tiene lugar a la izquierda del punto de fijación. Ahora cierre los ojos y piense detenidamente bajo qué fruta está el dinero. Si es capaz de coger la fruta correcta cuando abra los ojos, puede ganar los 100 dólares. Si ahora abre los ojos y la fruta todavía está a la izquierda del punto de fijación, sabrá la respuesta porque el hemis-

ferio que me vio colocar los 100 dólares bajo la manzana es el mismo al que se le formula la pregunta. No obstante, si yo moviera la manzana y la naranja mientras tiene los ojos cerrados de tal manera que, al abrirlos, ambas frutas aparecieran a la derecha del punto de fijación, éstas serían vistas por el cerebro izquierdo. Esto no plantea problema alguno para el cerebro normal. Seguramente el lector sabría responder porque tiene intacta la franja de fibras que conecta los dos hemisferios. Ahora bien, los experimentos con animales indicaban que, si se cortaban las interconexiones neurales entre los dos hemisferios, el cerebro derecho no sabía qué hacer. Este resultado parecía increíble, y la verdad es que nadie se lo creía. Nuestro sentido cotidiano de la unidad de conciencia es tan intenso que tenemos tendencia a rechazar afirmaciones como esa.

Pero había una forma de comprobarlo. Sucedió que allá por el año 1940 un neurocirujano de Rochester, en Nueva York, llamado William Van Wagenen, había seccionado las conexiones neurales entre los dos hemisferios de 26 pacientes epilépticos. Hay muchos tipos y grados de epilepsia, y normalmente esta enfermedad puede controlarse por medio de fármacos anticonvulsivos. Cuando la medicación falla, la epilepsia puede controlarse extirpando quirúrgicamente el tejido cerebral dañado que desencadena los ataques. Para que este procedimiento funcione sin causar más problemas de los que soluciona, hay que localizar el área o el foco dañados en un punto concreto del cerebro y comprobar si se trata o no de un área vital, como el área principal del lenguaje, por ejemplo. Como el foco no suele estar en un área crítica, puede realizarse la extirpación quirúrgica y los ataques se controlan. Pero, si el foco está en el área del lenguaje o si hay varios focos dañados, este remedio resulta impracticable. Es en estos casos cuando se piensa en la posibilidad de recurrir a una operación de división del cerebro.

Esta operación quirúrgica consiste en seccionar el cuerpo calloso en una o dos fases. En las primeras operaciones realizadas por Van Wagenen, a veces también se seccionaba la comisura anterior. La idea inicial de la operación era la de desconectar las dos mitades del cerebro para que los ataques iniciados en un hemisferio no se extendieran al otro, de manera que una de las mitades del cerebro quedara libre de ataques y pudiese controlar el cuerpo.

Los 26 pacientes de Van Wagenen con el cerebro dividido fueron observados después de la operación por Andrew Akelaitis, un joven neurólogo de talento3. Tras una serie de estudios, el doctor Akelaitis llegó a la conclusión de que los pacientes parecían esencialmente normales y sin alteraciones. El corte del tracto de fibras más voluminoso del cerebro humano parecía no ocasionar problemas de integración entre los dos hemisferios. De hecho, fueron los estudios de Akelaitis los que en parte condujeron al gran neuropsicólogo Karl Lashley a la conclusión de que el aspecto más importante de la organización cerebral era la cantidad media de tejido neural presente, no las áreas específicas. El hecho de cortar las interconexiones del cerebro y no hallar efecto alguno en sus funciones fue uno de los resultados más importantes de la neurología clínica humana de aquellos días.

Pero había algo que no encajaba. Los resultados del trabajo con animales estaban claros, y los de las investigaciones de Akelaitis con humanos, aunque eran contrarios a los resultados de las investigaciones con animales, tampoco parecían ofrecer dudas. Aquel invierno, en el helado Hannover, pensé que sería una buena idea pasar unas pruebas a los pacientes de Rochester. Todos habíamos hablado de esos pacientes el verano anterior, y a nadie se le ocurría una explicación de por qué los resultados no eran como los observados en los estudios con animales.

¿Eran diferentes los humanos o tenían las pruebas que se les pasaron algún defecto sistemático? Escribí a Sperry contándole algunas ideas sobre posibles pruebas basadas en el uso de lentes Polaroid y taquistoscopios.

El problema para evaluar correctamente a los pacientes estribaba en que había que presentar la información a la izquierda o a la derecha del punto de fijación proyectándola rápidamente, en un flash. Eso es precisamente lo que hace un taquistoscopio. Sperry me contestó diciendo que le parecía bien la idea; me hizo algunas sugerencias y me deseó suerte. Para cubrir los gastos de viaje durante mi estancia en Rochester a comienzos de la primavera, solicité una pequeña subvención de la Mary Hitchcock Foundation y recibí 100 dólares. Como un amigo iba a hospedarme en su casa, el dinero fue directamente a Hertz.

Todo el mundo estaba enterado de la existencia de los pacientes, pero nadie se había dedicado a estudiarlos realmente. Akelaitis había muerto cuando aún era joven y Van Wagenen se había trasladado a Florida, por lo que se me remitió a otro neurocirujano. Cuando hablé con él por teléfono desde Hanover estuvo cordial y receptivo. Me dijo que tenía la mayor parte de los historiales de los pacientes y que, examinándolos, podía obtener nombres, direcciones, etc. Así que nada más llegar a la ciudad, yo iría a su consulta y me pondría a trabajar.

Después de muchos preparativos, cargué los taquistoscopios, la grabadora y el resto del equipaje, todo prestado por el Departamento de Psicología de Dartmouth; lo metí en mi coche de alquiler y partí. Me sentía nervioso.

Llegué a Rochester y fui directo a la consulta del médico en cuestión. El doctor no estaba, de modo que su enfermera me condujo hasta los historiales de los pacientes y me dijo que podía empezar a trabajar. Tomé un

montón de carpetas y empecé, tratando de abrirme camino entre lo que me parecía un verdadero embrollo. Un par de horas más tarde sonó el teléfono. Era el neurocirujano; me llamaba para decirme que había cambiado de idea y que no me daba permiso para realizar los estudios. Me quedé estupefacto. No me dio ninguna auténtica razón, pero añadió: «Usted sabe que yo era médico interno en la época en que se llevaron a cabo las operaciones y, por si le interesa, le diré que el cuerpo calloso sólo se seccionó por completo en raras ocasiones, y puede que incluso nunca.»

Escribí a Sperry contándole las malas noticias, guardé mi equipo y me pasé de vacaciones toda la primavera. Cuando llegué a Pasadena en junio, me di cuenta enseguida de que estaba en el sitio apropiado. Todavía estaban allí muchos de los amigos que había hecho el verano anterior. A esto había que añadir la ilusión de emprender una nueva aventura y la curiosidad de si podría o no hacer frente a los estudios en Caltech. Yo poseía dosis adecuadas de timidez pero, no obstante, todavía era un poco engreido. Mis dos primeros años en Dartmouth fueron tiempos inestables para mí, y mi «bucólica» formación de enseñanza media en California no me abandonó hasta el comienzo de mi tercer año universitario. Llegado a este punto, tenía la impresión de que me había convertido ya en un genuino producto educativo Ivy League" y que, habiendo aprendido a aprender, el resto sería fácil. Al menos eso es lo que yo creía.

Para obtener el doctorado en biología había que hacer un examen oral de zoología. Acababa de terminar todos mis exámenes de zoología en Dartmouth y las cosas me habían ido bien, así que le pregunté a Sperry si podría ha-

^{*} Ivy League es el nombre que recibe el grupo formado por ocho importantes universidades de la costa Este de Estados Unidos. (N. del T.)

cer el examen al final del verano para quitármelo de encima. Sperry estuvo de acuerdo y yo empecé a prepararme para un tardío examen de verano que me pondrían Sperry y A. H. Sturdevant, el famoso y veterano genetista. Pregunté a otros estudiantes acerca del examen y me dijeron que Sturdevant disponía de varias cajas de insectos que prestaba a los estudiantes para que las estudiasen. Una parte del examen consistía en identificar, citando el género y la especie, 50 insectos que Sturdevant disponía en una caja. De modo que me fui corriendo a su despacho, cogí las cajas y me retiré a estudiarlas a mi despacho.

El examen tuvo lugar una tarde en el despacho de Sturdevant. Era todo un personaje, con aspecto de abuelo y siempre fumando en pipa. Empezó a hacer preguntas y me acuerdo perfectamente de que lo primero que me pidió fue que identificara los 50 insectos de una caja. Identifiqué correctamente 49 de los 50. Sturdevant sonrió, me hizo un par de preguntas rutinarias y luego le pasó el turno a Sperry. Este, que siempre adoptaba una actitud estoica en este tipo de situaciones, comenzó con la pregunta de embriología más sencilla posible, que cualquier estudiante sabría responder. Me pidió que describiera el desarrollo de la cápsula ótica, es decir, el desarrollo del oído interno.

Estaba chupado, pensé para mis adentros, y comencé. Sperry no reaccionaba a mi exposición. Simplemente estaba allí sentado y escuchaba mi respuesta. No emitía ningún tipo de señal, ni «uhms» ni «ajás», nada que indicase si yo iba bien. Me aterroricé. Lo que hacía la dichosa cápsula ótica al emigrar a la parte correcta del cerebro era girar a la izquierda, cambiar su composición esencial y enroscarse, creo, en el hígado. Pero después de mi respuesta los examinadores debieron de pensar que yo no sería capaz de reconocer ni una rana saltando sobre la mesa. Me pidieron que esperase fuera y, unos minutos

más tarde, salió Sperry para decirme que pensaban que debía volverme a examinar en otoño, después del comienzo de las clases. La experiencia me dejó alicaído pero me volvió más juicioso. Para mí se había acabado la *Ivy League*. Caltech requeriría todas mis energías.

Roger W. Sperry tenía 48 años cuando yo llegué. Había sobrevivido ya a una importante enfermedad, la tuberculosis. Sperry era considerado una figura compleja, excesivamente reservado y constantemente preocupado por lo que motivaba las acciones de las personas. Sus colegas lo consideraban taciturno, pero era totalmente accesible con sus alumnos. Antes de su llegada a *Caltech* a principios de los años cincuenta, a instancias del premio Nobel George Beadle, que se había dado cuenta de su genio, Sperry había desempeñado algunos puestos secundarios en el mundo académico.

Con la excepción tal vez de Sir John Eccles, Sperry era con diferencia el científico vivo del cerebro más famoso de entonces. Debido a sus revolucionarios estudios sobre la especificidad de los nervios, era considerado uno de los pensadores más importantes en el campo de la neurobiología. La bien documentada teoría que perfiló en los años cincuenta todavía sirve de guía a una cantidad enorme de investigaciones actuales sobre neurobiología. Había llevado a cabo además una serie de experimentos que fijaron límites a las teorías más desbocadas sobre la biología que subyacía a los principios de la Gestalt. Y había trabajado en los estudios sobre la situación del cerebro dividido durante 8 años aproximadamente. Era una institución de su época.

Lo que realmente me interesaba ya había comenzado mientras tanto. Poco después de mi llegada, Sperry me llamó para decirme que Joseph Bogen, neurocirujano interno del White Memorial Hospital, proyectaba realizar a finales del otoño operaciones quirúrgicas de separación

del cerebro en humanos. Bogen había estado en Caltech con una beca posdoctoral con el profesor Anthony Van Harreveld, cuyo despacho estaba al lado del de Sperry. Había llegado a interesarse por el asunto del cerebro dividido y quería saber si la cirugía tenía o no algún sentido como medio de controlar la epilepsia en los seres humanos. Para mostrar que el control de los ataques epilépticos por medio de la cirugía era inocuo, siempre se citaban los primeros informes de Van Wagenen y de Akelaitis. Bogen se hizo con todos los trabajos publicados y empezó a examinarlos tratando de comprobar esta afirmación. Cuando todos los casos estuvieron clasificados, descubrió que había tantas pruebas a favor como en contra de que los ataques se podían controlar por medio de la cirugía. Bogen pensó que merecía la pena intentar la cirugía, sobre todo en aquellos pacientes cuyos ataques no podían controlarse por medio de la medicación anticonvulsiva normal. El primer paciente fue el caso W. J.

Como yo ya había desarrollado algunas pruebas para los experimentos de Rochester y estaba empezando, Sperry pensó que yo era la persona idónea para dirigir el proyecto. Podían haberlo hecho otros, pero o se iban a ir o no estaban interesados. Mitchell Glickstein había probado suerte con una chica que había sido enviada al laboratorio pensando que tenía una lesión en el cuerpo calloso. Fue imposible hacerle pruebas y Glickstein decidió que prefería trabajar con monos, así que el proyecto quedó directamente en mis manos.

Una de las características que hacían de Sperry un tutor excelente era que le dejaba a uno obrar por sí mismo. Había montado un laboratorio con un contexto apropiado para el trabajo y siempre estaba allí, trabajando para mejorar las cosas, aconsejando, ayudando y guiando. Pero no daba órdenes ni le decía a nadie lo que tenía que hacer. Muchos científicos veteranos no llevan sus laboratorios de esta manera; para ellos los estudiantes licenciados son peones de sus juegos de ajedrez. Sperry era distinto y, debido a su forma de trabajar, todos salíamos beneficiados, el propio Sperry tanto como sus estudiantes. El resultado era que todo lo que surgía del trabajo era fruto de una auténtica labor de equipo. En este ambiente todos nos relacionábamos libremente y siempre estábamos hablando de todo. En los primeros años, el trabajo lo hicimos fundamentalmente Sperry, Bogen y yo mismo, pero también participaban otras personas.

A comienzos de los sesenta, cuando todo estaba ya en marcha, había una atmósfera especial en Caltech. Durante el primer año, viví en una casa situada al otro lado de la calle en la que estaban los laboratorios de biología y que estaba humorísticamente registrada en la guía telefónica a nombre de J. A. Prufrock. Otro alumno de Sperry, Charles Hamilton, había dispuesto todo para que yo tuviera una habitación allí, justo al lado de su cuarto. En ese momento vivían 5 personas en la casa, entre las que estaban dos físicos teóricos que han llegado muy lejos en su profesión.

En la parte de abajo vivía Sidney Coleman, por aquel entonces alumno del gran Richard Feynman y actualmente profesor de física teórica en Harvard. Sus hábitos de trabajo eran tan extraños como los míos. En cierta época solía levantarme a medianoche y me iba al laboratorio hasta las 4 de la mañana, volvía para desayunar y luego iba otra vez al laboratorio hasta las 6 de la tarde más o menos. Una mañana volví a eso de las 4 y la luz de Coleman estaba encendida. Allí estaba él, tumbado en la cama y mirando fijamente al techo. Era tarde incluso para sus hábitos, de manera que asomé la cabeza y le dije: «Sidney, ¿te encuentras bien?» «Silencio», dijo, «estoy trabajando.»

Norman Dombey, natural de las islas Británicas y

alumno privilegiado del Nobel de física Murray Gell-Mann, siempre estaba paseando como absorto en sus pensamientos. Te crispaba los nervios, porque Dombey comprendía cosas de las que yo no tenía ni idea. Cierto día, después de ganarle al ajedrez, acontecimiento que saboreé con satisfacción, le dije: «Norman, ¿en qué estás pensando constantemente? Es penoso verte trabajando aparentemente sin cesar.» Dombey, que si se le mandara a la tienda tardaría una eternidad en volver con una barra de pan, me miró completamente asombrado y dijo: «Pues verás, normalmente lo que intento es recordar si Chuck se acordó de comprar mi coca-cola.»

En nuestra casa celebrábamos fiestas con frecuencia y acudían muchos profesores a pasar un rato agradable. Coleman tenía momentos de engreimiento en los que solía decir que la única diferencia que encontraba entre Feynman y él era que en los seminarios de física Feynman llegaba a las cuestiones clave exactamente 30 milisegundos antes que él. Una noche, cuando el trabajo sobre el cerebro dividido estaba ya en marcha, Feynman acudió a una de las fiestas. Estaba enterado de todo lo que ocurría, y según salía nos dijo a Hamilton y a mí: «Si me garantizáis que podré seguir dedicándome a la física después de la operación de separación del cerebro, contad conmigo para abrirme. Quizás pueda trabajar incluso más.» Yo le contesté: «garantizado», y todos nos echamos a reír. Feynman se quedó callado un momento y entonces dijo: «bueno, buenas noches», y extendió ambas manos para repartir gestos de despedida.

Joe Bogen siempre estaba disponible. Es un hombre generoso, con muchas ganas de vivir. Sperry no era muy dado a la tertulia, pero Bogen era un verdadero camarada y le entusiasmaba comer, beber y charlar sobre cualquier tema. El fue quien me inició en el conocimiento de los buenos vinos, la buena comida y la conversación entrete-

nida. Bogen es una persona inteligente, con suma facilidad de expresión y llena de energía. Muchas de las cosas que emprendimos durante aquellos primeros años las pudimos terminar sencillamente gracias a los incesantes esfuerzos de Bogen.

Eramos algo más que un montón de personas inteligentes. Formábamos un grupo de gente que estaba allí para llevar a cabo grandes cosas y de ningún modo nos íbamos a conformar con menos. Todos trabajábamos mucho y, debido al especial ambiente de *Caltech*, nos creíamos excepcionales. Sospecho que *Caltech* pensaba lo mismo. Siguiendo la costumbre establecida, el día que recibí mi notificación de alistamiento, en el otoño de 1961, la llevé al despacho del director. Esa tarde recibí una llamada de la comisión local de alistamiento diciendo que no era necesario que me presentase. Sin lugar a dudas, aquel era un ambiente elitista. Era una época dorada.

Siempre se produce una asimetría en las relaciones de los neurobiólogos con los físicos. Hay que saber mucho para poder decir algo interesante sobre el trabajo de estos últimos. Afortunadamente, a los físicos les resulta más fácil hacer observaciones acerca de nuestro trabajo. Para seguir una línea de investigación que alguien intente perfilarte, basta con saber unas cuantas cosas fundamentales sobre la anatomía del cerebro humano; esto es lo que me permite contar mi historia en términos generales. Como he dicho antes acerca de los animales, nuestra especie también posee dos hemisferios cerebrales o dos mitades cerebrales. La corteza, hemisferio o mitad cerebral izquierda, controla la mitad derecha del cuerpo. Esta parte del cerebro también controla por regla general el lenguaje y las funciones cognitivas generales. Las lesiones de la mitad izquierda pueden producir afasia, lo que significa que, dependiendo de la zona del cerebro izquierdo que resulte lesionada, una persona puede padecer una incapacidad

para comprender el lenguaje, para producirlo (esto es, para hablar) o para ambas cosas a la vez. Se trata de un tipo grave de lesión cerebral.

La corteza, hemisferio o mitad cerebral derecha no contribuye normalmente a los procesos lingüísticos de forma importante. Por lo general, controla procesos no verbales, como la atención y la discriminación de patrones en detalle (como el reconocimiento de caras y la orientación de líneas, por ejemplo) y, en el dominio auditivo, se encarga de cosas tales como la detección de las diferencias entre tonos complejos.

Normalmente estas dos partes del cerebro están interconectadas por medio del cuerpo calloso. Este sencillo sistema de fibras nerviosas constituye la mayor vía neural del reino animal. Su función, que hasta los estudios actuales se ignoró durante mucho tiempo, consiste en mantener informado a cada hemisferio de las actividades del otro. Por lo que sabemos, se trata de un sistema de información perfectamente eficaz, hasta tal punto que carece de sentido decir que una persona normal está dominada por el cerebro derecho o por el cerebro izquierdo.

Nuestra primera tarea consistió en determinar si el funcionamiento normal del cerebro de W. J. se ajustaba a las pautas señaladas en los libros de texto. Comencé evaluando el sistema visual. Mi laboratorio, situado en el edificio Alles, era muy pequeño, y todavía no estaba equipado con la parafernalia habitual de un laboratorio de biología. Tenía una característica ciertamente muy útil: las tuberías del techo estaban a la vista. Construí una enorme pantalla de retroproyección y la colgué de las cañerías. A continuación, monté proyectores de diapositivas con obturadores mecánicos de tal manera que pudieran proyectarse breves exposiciones de una imagen al campo visual derecho o al izquierdo. De este modo, cada mitad del cerebro podía ser sometida a prueba por sepa-

rado, y nosotros podíamos ver si la información procedente de cada mitad era comunicada a la otra de forma normal.

Preparamos otras pruebas para evaluar funciones táctiles, es decir, para ver si W. J. poseía habilidades sensoriales normales en las manos, las piernas y la cara. Tardamos algunos meses en disponerlo todo. Cuando estuvimos preparados, Bogen trajo a W. J. para realizar la prueba anterior a la operación quirúrgica, que tuvo lugar sin que nada raro apareciera. W. J. no tenía problemas para saber qué información se había presentado a cualquiera de los dos hemisferios, por lo que era completamente normal a este respecto. Su cuerpo calloso funcionaba perfectamente. W. J. volvió a casa en espera de ser operado.

Bogen y su profesor de neurocirugía, Peter Vogel, decidieron cortar el cuerpo calloso y la comisura anterior en una sola operación. Los argumentos que daban para tomar esta decisión eran los mismos que los de Van Wagenen: esperaban que la operación aislara cualquier futuro ataque en una de las mitades del cerebro, manteniendo libre de ataques y bajo control la otra mitad con el fin de que el paciente no sufriera una convulsión generalizada. Sin embargo, después de observar algún ataque postoperatorio ocasional en algunos de los pacientes operados con anterioridad, se puso de manifiesto que el mecanismo de control era diferente del esperado. En lugar de sufrir ataques unilaterales con la misma frecuencia que antes de la operación, la actividad convulsiva de los pacientes se redujo por término medio enormemente. Se llegó a la conclusión de que, mediante la sección del cuerpo calloso, el foco productor de la epilepsia tenía mayores dificultades para desencadenarse, en gran parte debido a los efectos tónicos del seccionamiento del calloso. La operación lograba controlar los ataques hasta un nivel desconocido anteriormente por los pacientes.

La primera operación fue un éxito, si bien W. J., que tenía 48 años en la época en que fue operado, tardó mucho tiempo en recuperarse⁴. Permaneció en el hospital aproximadamente durante un mes, y hasta algún tiempo después no estuvo preparado para venir a Caltech a pasar las pruebas. Cuando por fin llegó, fue un día muy emocionante para mí. Resultó ser el principio de una nueva era en el campo de la neuropsicología humana.

Bogen y yo nos encontramos en la entrada. El estaba vestido con su gracioso traje de residente, que siempre era blanco de mis bromas. W. J. y su esposa vinieron en coche desde Downey. Le ayudamos a salir del coche y lo colocamos en una silla de ruedas. Ante la insistencia de Bogen, W. J. se puso un casco de protección por si se caía, mostrándose sonriente y jovial. Mientras introducíamos a W. J. en el edificio, recuerdo la mirada incrédula que me lanzó Max Delbruck, que regresaba en ese momento a su laboratorio después de haber desayunado, como diciéndome: ¿es posible que alguien vaya a aprender algo de este epiléptico? (Delbruck era biofísico y futuro premio Nobel, y, según muchos, fue uno de los principales impulsores de la biología molecular.) Nosotros seguimos nuestro camino apretando el paso.

Una de las características más curiosas de las operaciones de división del cerebro estriba en el hecho de que el comportamiento del paciente, su afectividad y personalidad general quedan completamente intactos. La desconexión del cerebro izquierdo y el derecho no perturba la vida cotidiana, hasta el punto de que al ojo inexperto le resultaría difícil descubrir siquiera que un paciente ha sido operado. Los efectos significativos únicamente pueden observarse bajo estrictas condiciones de laboratorio, utilizando los mismos procedimientos que en las pruebas que realizamos antes de la operación.

Voy a explicarlo una vez más, dada la dificultad de mantener el hilo. Si una persona fija su mirada en un punto del espacio, sobre la pared por ejemplo, todo lo que se encuentra a la izquierda del punto se proyecta sobre el sistema visual de la mitad derecha del cerebro, y todo lo que se encuentra a la derecha del punto se proyecta sobre la mitad izquierda del cerebro.

En el caso de un cerebro normal, no tiene mucha importancia el lugar de la corteza visual sobre el que se proyecte la información, ya que las vías de conexión entre los dos hemisferios están intactas. La información que cae dentro del campo visual derecho se proyecta directamente en el hemisferio izquierdo, que suele ser el del habla. La información que cae dentro del campo visual izquierdo se proyecta inicialmente en el hemisferio derecho, pero a continuación se transmite instantáneamente al hemisferio izquierdo, que normalmente es el dominante respecto al lenguaje y el habla. Las cosas no ocurren de este modo en el caso de un paciente con el cerebro dividido.

Los descubrimientos que hicimos aquella tarde fueron el comienzo de la historia de las investigaciones sobre el cerebro dividido en seres humanos. Las respuestas de W. J. fueron completamente diferentes de las que había dado en las pruebas previas a la operación. Lo introdujimos en la sala, en la que todavía colgaba del techo mi pantalla de proyección del tamaño de una de cinemascope, y encendí los proyectores de diapositivas. Le dije a W. J. que fijara su mirada en el punto y comencé a proyectar figuras, como triángulos y círculos, y palabras sencillas distribuidas aleatoriamente en cada una de las partes del campo visual para que no se supiera de antemano el campo visual ni, por tanto, el hemisferio cerebral, sobre el que se proyectaría el estímulo.

Los resultados fueron claros. W. J. nombraba fácil-

mente el estímulo visual proyectado en el campo visual derecho, esto es, en el hemisferio izquierdo, el que controla el habla. Esta mitad del cerebro realizó la tarea tan bien como la había realizado antes de la operación. Sin embargo, cuando los estímulos se proyectaban en el campo visual izquierdo, W. J. no era capaz de decir nada. Cuando se le preguntaba, W. J. negaba haber visto ningún estímulo. Una vez desconectado, el hemisferio derecho no tenía forma de transmitir información al izquierdo, que era el que podía elaborar una respuesta verbal. Se había transformado en un sistema mental independiente. El próximo paso era determinar lo que podía hacer el cerebro aislado.

La división del cerebro establecía de hecho una diferencia en el modo como circulaba la información en la cabeza. El cerebro no es un sistema amorfo en el que cualquier información puede alcanzar cualquier punto aunque haya una lesión cerebral. W. J. podía nombrar fácilmente los objetos que sostenía con su mano derecha, aunque tuviera los ojos tapados. Pero no podía nombrar-los cuando los sostenía con su mano izquierda.

El tacto es una modalidad sensorial distinta de la visión, pero la desconexión que se produce es la misma. La información táctil procedente de la mano derecha se proyecta de forma cruzada al cerebro izquierdo. Puesto que el cerebro izquierdo es el encargado del habla y del lenguaje, nombrar los objetos no representaba problema alguno. Pero la información táctil de la mano izquierda se proyectaba de forma cruzada al cerebro derecho, que ahora estaba aislado. Nos quedamos deslumbrados ante los resultados.

Todo esto ocurrió el primer día de lo que iba a ser una rutina casi semanal durante los 5 años siguientes. Los resultados coincidían con los hallazgos de los experimentos con animales y ahora el terreno estaba preparado para intentar resolver el problema de cómo funciona cada mitad del cerebro en aislamiento. Este trabajo todavía se está desarrollando, pero gran parte del mismo se llevó a cabo durante aquellos 5 primeros años.

La mayor parte de las pruebas tuvieron lugar en casa de W. J., en Downey, ya que a él le resultaba difícil venir a Caltech. Preparé un equipo portátil de pruebas y partimos para su casa en mi viejo coche. W. J. y su esposa siempre me recibían cordialmente. Cuando W. J. venía a Caltech a pasar pruebas, solía ser el sábado o el domingo por la mañana, y Sperry y yo le pasábamos las pruebas juntos. Después de cada sesión, Sperry y yo hablábamos durante un par de horas acerca del significado de lo que habíamos hecho. Después de mis viajes a Downey en coche, Sperry tomaba abundantes notas mientras yo le informaba acerca de los resultados de las pruebas de aquel día. Sperry era muy hábil para provocar los pensamientos de uno. Dejaba correr el flujo de la conversación sin limitarla. En este aspecto su papel era esencial y determinante. A partir de estas conversaciones desarrollamos el contexto y el marco que luego llegarían a ser los modelos para este tipo de investigación. Recogíamos nuestros resultados en informes claros, sin recurrir a la incomprensible jerga médica, ya que escribir bien era otro de los muchos talentos de Sperry.

W. J. era un hombre inteligente con un socarrón sentido del humor. Una de las baterías de pruebas tenía por objeto comprobar si su hemisferio derecho respondía o no a la súbita proyección de una chica desnuda presentada inesperadamente en una diapositiva en medio de una serie de estímulos nada emocionantes, como manzanas o cucharas. W. J. siguió estoicamente sentado después de la proyección de la diapositiva de la chica, sin alterarse emocionalmente y diciendo que no había visto nada. Decepcionado, recogí el material y me dirigí a *Caltech*. A mitad

de camino me di cuenta de que no había pasado la prueba al hemisferio izquierdo. Di la vuelta y regresé, monté mi equipo y realicé de nuevo toda la operación, pero esta vez con la variante de presentar la sorpresa al hemisferio izquierdo para ver si respondía. Siguió sin aparecer modificación alguna de las emociones; simplemente alguna referencia al hecho de que se trataba de una chica. Me di cuenta de que los estímulos no daban juego y me disponía a marcharme cuando W. J. me dijo: «Dime, Mike, ¿es esa la clase de alumnas que tenéis en Caltech?»

Sin embargo, las cosas no siempre eran tan sencillas. El viejo dicho de que nada hay más simple que las soluciones que hallamos ayer es una de las grandes verdades de la ciencia. Por cada cosa que salía bien, había 20 intentos fallidos. Uno de mis fallos favoritos fue aquel que se produjo cuando alquilamos una máquina de juegos recreativos para enviarla a casa de W. J. Pensaba que podía servirnos para obtener datos sobre posibles problemas de coordinación visomotriz. El administrador de Caltech se mostró reacio, y me preguntó que qué tipo de cometido creía que era el suyo; yo le pedí que por favor hiciera lo que le pedía, y él amablemente lo hizo. Así que el voluminoso artilugio llegó por fin a casa de W. J. y lo colocamos en el patio. Me senté y jugué un poco con la máquina, satisfecho de no haberla tenido que instalar en mi despacho; miré al monstruo y me dije a mí mismo: «Muy bien, gran hombre, ¿cuál es la cuestión que quieres abordar? Y si se te ocurre alguna, ¿cuál es el control?» Dejé que W. J. jugara también un rato con la máquina y luego ordené que la retiraran. No recuerdo haber hablado mucho de este episodio con Roger.

Continuamos pasándole pruebas a W. J. durante varios años, a lo largo de los cuales estudiamos diversos temas que tienen relación con la memoria, el lenguaje, la atención y el control motor. Fruto de estos primeros tra-

bajos fue la confirmación de las experiencias con animales en el caso del ser humano: la bisección de las comisuras cerebrales originaba dos sistemas mentales separados, cada uno con su propia capacidad de aprender, recordar, sentir emociones y comportarse. La noción de que el hombre es un agente consciente indivisible era discutible. Emprendimos una nueva serie de pruebas. W. J. vivía feliz en Downey, California, sin noción alguna de la importancia de los descubrimientos que se habían hecho mediante la observación de su comportamiento.

Lo que se interpreta como un avance del conocimiento resulta ser con mucha frecuencia mera información correctora, o información que contradice alguna suposición o alguna manera de pensar común. Ese tipo de hallazgos es objeto de mucha atención porque son contraintuitivos por su propia naturaleza. Nuestros primeros estudios tenían esta cualidad. Recuerdo que una noche le hablé a un psicólogo de nuestros descubrimientos. Esta persona había pasado toda su vida intentando comprender las leyes psicológicas del razonamiento. Cuando terminé, me dijo: «En efecto, la cosa es seria. En lugar de tratar de comprender una mente, tú ahora vas y me das dos. ¿Es esto un avance?» La verdad que había en esta observación fue suficiente para tenerme ocupado en los próximos años intentando situar el trabajo sobre el cerebro dividido en un marco paradigmático que iluminase la naturaleza de la cognición humana. Mi oportunidad para profundizar en los mecanismos de la experiencia consciente llegaría después de abandonar Caltech. Con todo, el descubrimiento de dos mentes independientes en un solo cerebro no era fácilmente aceptable por sus consecuencias para las ideas que entonces se daban comúnmente por supuestas sobre la unidad de la mente.

Unos años después del comienzo de nuestros trabajos, Sperry fue invitado a una reunión en el Vaticano pro-

movida por Sir John Eccles, un ferviente católico. Habían acudido muchas de las figuras destacadas de la investigación del cerebro, y fue el primer gran encuentro en el que Sperry presentaría nuestros descubrimientos sobre los dos primeros casos de cerebro dividido, los casos de W. J. y N. G.⁵. Siguiendo su costumbre habitual, Sperry no dio importancia a la reunión. En cambio, yo pensaba que su estudiada indiferencia iba a causarnos problemas, no con los científicos del cerebro, sino con los eruditos papales del Vaticano. Como buen chico católico, yo sabía que ellos sabían de verdad. Estaba verdaderamente impaciente por que Sperry volviese y me contase lo que había pasado en aquellla histórica reunión.

Sperry es la persona que más disfruta quitándole importancia a las cosas de todas las que he conocido. Desde hacía tiempo sentía, además, verdadera curiosidad por saber hasta qué punto una persona inteligente puede tomar la religión en serio. Estas actitudes afloraron juntas en su relación del encuentro. Con desacostumbrada ansiedad le pregunté cómo había ido el encuentro. «Oh, el Vaticano es un sitio excelente para hacer fotografías en color. Todos aquellos curas yendo de un lado a otro, vestidos con aquellas túnicas de colorines tan llamativos, resultan todo un espectáculo. El Papa era bastante interesante. En su discurso de apertura dijo que podíamos quedarnos con el cerebro siempre que la mente se la dejásemos a él.» Yo me quedé sin habla en aquel momento, pero luego me enteré de que el Papa no había dicho realmente eso. Supongo que se trataba de la manera que tenía Sperry de hacerme ver que las suposiciones acerca de la naturaleza del hombre que yo manejaba se basaban en una serie de ideas católicas de miras estrechas que carecían de valor para los científicos, especialmente para aquellos que dedican su vida a estudiar la naturaleza de la experiencia consciente.

¿Pero de qué modo iban a continuar los primeros ha-

llazgos sobre el cerebro dividido, la idea de «dos mentes en un cerebro»? Se decidió defender la idea de que las mitades izquierda y derecha del cerebro no sólo eran entidades mentales separadas y distintas, cada una con sus diferentes habilidades especializadas, sino que, además, eran portadoras de estilos cognitivos distintivos. Así fue como comenzaron las versiones más populares de la investigación sobre el cerebro dividido. Las ideas relativas a la existencia de estilos cognitivos diferentes han sido promovidas en gran parte por periodistas o científicos que nunca han examinado a un paciente con el cerebro dividido. La mayor parte de lo que dicen no tiene sentido, pero merece la pena examinarlo con más detalle.

Capítulo 4
La desmitificación de la dicotomía
entre cerebro derecho y cerebro izquierdo

En California, las historias sobre el cerebro derecho y el cerebro izquierdo están a la orden del día. Todas ellas derivan de la creencia popular, apoyada por la investigación neurológica, según la cual el cerebro derecho es el lugar del que surgen nuestros impulsos creativos y nuestra capacidad de síntesis. Otra creencia adicional consiste en pensar que el cerebro derecho ha sido la oveja negra de nuestro sistema cultural y educativo, por lo que ya es hora de prestarle una atención especial. La situación ha llegado hasta el punto de que la asamblea legislativa del Estado de California ha analizado algunas propuestas sobre el programa de estudios de la escuela primaria que hacen hincapié en aprendizajes basados en el cerebro derecho. Nuestras escuelas -se nos asegura- son demasiado rígidas desde el punto de vista cognitivo. Necesitamos más cursos de arte para fortalecer el cerebro derecho y estimular así nuestra creatividad.

Esta manera de pensar también se está extendiendo a

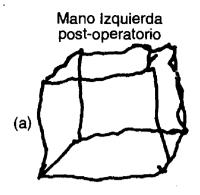
los medios de comunicación. Un anuncio de una edición reciente de la revista *Esquire* presenta una máquina que sirve para armonizar las pautas eléctricas de cada mitad del cerebro. Se le asegura al usuario que, por la módica suma de ocho mil dólares, podrá sentirse más relajado. Los fabricantes no dudan en asegurar que el aparato tiene su origen en el conocimiento de las funciones del cerebro derecho a que dieron lugar los grandes descubrimientos de los años 60 y 70.

O pensemos en los Juegos Olímpicos de 1984. Durante la carrera de maratón, un periodista de la cadena norteamericana de televisión ABC nos informaba de que ¡correr facilita el fortalecimiento de la parte derecha del cerebro! Sirviéndose de complicados gráficos, el periodista hacía confusas divagaciones sobre el ejercicio de correr, enmarcándolas en el contexto de los mitos populares acerca de las dos mitades del cerebro.

¿De dónde proceden todas estas especulaciones? ¿Cómo es posible que unos descubrimientos de alcance limitado y realizados en el laboratorio fueran tan escandalosamente mal interpretados? ¿Por qué fueron recogidos tan ávidamente por la prensa y luego adoptados por toda clase de diletantes científicos? Son varias las razones que explican este fenómeno. La dicotomía entre el cerebro izquierdo y el cerebro derecho es simple y muy fácil de comprender, y proporcionaba una manera de hablar sobre la moderna investigación del cerebro y sus aplicaciones a la experiencia cotidiana. Es cierto que nadie discute que las personas tienen habilidades artístico-intuitivas por una parte y lógico-lingüísticas por otra. A primera vista es evidente que la mente lleva a cabo actividades distintas. Así que la ciencia se utiliza para probar que unas capacidades se localizan en el cerebro izquierdo y otras en el derecho, lo cual prueba a su vez que las habilidades mentales son diferentes y, por tanto, susceptibles

de entrenarse por separado. La imagen de una parte del cerebro dedicada a una actividad, y la otra dedicada a algo completamente diferente, se palpaba en el ambiente, sin importar demasiado que se tratase de un concepto confuso.

Este peligro no pasó desapercibido a otras personas. Por ejemplo, Robert Ornstein, un psicólogo con talento y hábil divulgador, lo comprendió hasta el punto de dilatar la metáfora para incluir modos de pensamiento propios de la cultura contemporánea. Ornstein redactó un libro de enorme éxito inspirado en cultistas de Oriente y Occidente, científicos del cerebro y otros psicólogos¹. Los estilos cognitivos del cerebro derecho y del cerebro izquierdo se convirtieron en emblemas de cien modos distintos de ver la vida que abarcaban de lo ridículo a lo absurdo. Aún así, cada opinión encontraba siempre su público. Cuando esos emblemas llegan a figurar en una caricatura de *The New Yorker* (véase el frontispicio de este libro), te das cuenta de que se han convertido en parte de la cultura.


El fervor desatado por estas ideas está relacionado, en parte, con la dificultad de comunicar las ideas científicas al gran público. Comprender de verdad los conceptos que surgen de los datos experimentales es un asunto serio, y la mayoría de la gente carece del tiempo o el interés necesarios para asimilar la información de modo crítico. Esto exigiría aprender un vocabulario extenso y a menudo extraño. El hecho de que sea necesario matizar las ideas y entenderlas con reservas supone una carga demasiado pesada para el auditorio potencial. De ahí que el periodismo científico se base en afirmaciones de fácil comprensión que puedan tener interés para la mayor parte de la gente, sobre todo desde el punto de vista personal. Esto no tendría mayor importancia para el tema que tratamos en este libro si no fuera por las distorsiones que implica,

las cuales dificultan la comprensión de las razones por las que los pacientes con el cerebro dividido son verdaderamente interesantes. Además, las simplificaciones abusivas y las informaciones abiertamente falsas han tendido a trivializar la complejidad de los procesos integrados de nuestra mente.

Permítanme retomar la investigación relacionada con este tema y tratar de explicar el significado real de los estudios sobre el cerebro dividido, mostrando lo que se puede inferir de los mismos y lo que no. Comenzaré por el caso de W. J., ya que fue el primer paciente en el que observamos interesantes asimetrías en lo que se conoce con el nombre de tareas viso-espaciales².

Todo empezó una soleada tarde de 1961 en Downey, California. Presentamos a W. J. el dibujo de un cubo y luego le pedimos que lo dibujara él mismo. Su mano izquierda realizaba la tarea sin problema alguno; en cambio, con la derecha nuestro paciente fue completamente incapaz de hacerlo (véase la figura 4.1). Lo mismo ocurrió con la prueba de los Cubos de Kohs3. Esta prueba consta de una serie uniforme de cubos rojos y blancos que el sujeto evaluado tiene que ordenar para que formen un dibujo. Los resultados de esta prueba fueron los mismos que antes. W. J. no podía realizar la tarea con su mano derecha, pero sí con la izquierda. Estos resultados concordaban con los resultados conocidos sobre daños focales en el cerebro izquierdo o en el derecho. En cambio, lo que nunca antes se había observado era que una de las mitades del cerebro dispusiera de una función mientras que la otra carecía de ella. Se trataba de un fenómeno sorprendente y decidí filmarlo de inmediato.

La Universidad de Caltech compró un antiguo tomavistas Bolex y yo le pedí a mi amigo Baron Wolmon, un consumado fotógrafo, que filmase las imágenes en casa de W. J. Eran preciosas y quienes las vieron quedaron im-

Mano Izquierda post-operatorio

(b)

Mano Derecha post-operatorio

Mano Izquierda post-operatorio

Mano Derecha post-operatorio



FIGURA 4.1. La sección (a) muestra los primeros dibujos hechos por el paciente W. J. en 1961. La mano izquierda, cuyo control motor corre a cargo principalmente del hemisferio derecho, realizaba la tarea con mayor destreza que la derecha. La derecha, cuyo control motor corre a cargo fundamentalmente del hemisferio izquierdo, centro dominante del lenguaje, la realiza mal. La sección (b) muestra los resultados de la misma prueba aplicada al paciente P. S., al que estudiamos algunos años más tarde en el Cornell Medical Center.

presionados. Coloqué un dibujo sencillo en una tarjeta completamente visible que puse sobre el mantel blanco de la mesa favorita de W. J. Wolmon fijó las luces y el tomavistas y luego yo coloqué al lado del dibujo los 4 cubos que había que ordenar para formar el modelo. Le dije a W. J. que comenzara a realizar la tarea con su mano izquierda, cuyo control corre a cargo principalmente del cerebro derecho. W. J. ordenó los cubos correctamente en muy poco tiempo y sin dificultad alguna. Luego recogí los cubos, los mezclé y los coloqué de nuevo sobre la mesa. Ahora W. J. tenía que realizar la misma tarea, pero con su mano dominante, la derecha, que recibe su principal inervación del cerebro que controla el habla, el izquierdo. La película se nos terminó mientras aún observábamos a W. J. esforzándose inútilmente por realizar la tarea. Mientras construía el modelo, la mano izquierda trató de intervenir en varios momentos para ayudar a su incompetente mano derecha. La parte izquierda de su cuerpo y la derecha de su cerebro sabían cómo realizar la tarea. El fracaso de W. J. era evidente e inapelable.

Wolmon cargó la cámara de nuevo y, esta vez, dije a W. J. que usase cualquiera de sus manos. Fue la primera vez que vi cómo los dos sistemas mentales podían entrar en un conflicto de grandes proporciones. La mano izquierda avanzaba en la resolución de la tarea, pero entonces intervenía la derecha y deshacía el modelo construido por la izquierda. Era como si las dos manos sostuvieran un duelo, y esta observación me llevó a planear otros muchos experimentos de los que hablaré más adelante.

No obstante, el aspecto más importante de nuestra observación fue la disociación de competencias que se produjo entre las dos mitades del cerebro. Estos descubrimientos constituyeron el fundamento para afirmar que el cerebro izquierdo era dominante en lo que respecta a los procesos lingüísticos y el derecho en lo que respecta a las

tareas de construcción visual. Posteriormente esta interpretación experimentó una radical revisión; después de una nueva serie de experimentos que realizaron otros investigadores, la interpretación se modificó de tal modo que apenas resultaba reconocible. Fue precisamente la interpretación de estos nuevos experimentos lo que hizo que me separara de mi mentor y sus nuevos colegas. Las opiniones que defendían me parecían poco convincentes. Jerre Levy y Roger Sperry, por ejemplo, adoptaron un rumbo diferente y sostenían en artículos publicados por aquella época que el cerebro derecho estaba especializado en procesos holísticos mientras que el izquierdo era necesario para los procesos analíticos4. Según sus propias palabras, «Los datos indican que el hemisferio menor, el que carece de la capacidad lingüística, está especializado en la percepción de Gestalten o totalidades, las cuales constituyen ante todo una síntesis derivada del tratamiento que recibe la entrada de información. El hemisferio del habla (el izquierdo), en cambio, parece operar de forma más lógica y analítica, como si fuera un ordenador. Su lenguaje es inadecuado para realizar las complejas y veloces síntesis efectuadas por el hemisferio menor». Se trataba de una idea sugerente, aunque basada en datos sumamente limitados. La interpretación que hacía Bogen de estos nuevos experimentos era más conservadora. Bogen no era partidario de caracterizar las dos mitades siguiendo las dicotomías habituales entre lo verbal y lo visoespacial, o entre lo analítico y lo holístico. Prefería emplear los términos «aposicional frente a proposicional», por medio de los cuales quería decir que el cerebro derecho recibe estímulos y los yuxtapone o compara con información previa, actuando de forma más automática y directa que el izquierdo.

Con todo, Levy, Bogen, Trevarthen y Sperry estaban convencidos de que entre el cerebro derecho y el iz-

quierdo existían diferencias, y de que éstas estaban relacionadas con el diferente modo de tratar la información que tiene cada mitad. Para decidir si se acepta o no la veracidad de opiniones tan categóricas, conviene tener en cuenta los experimentos que las originaron.

En el experimento clave se utilizó lo que se conoce con el nombre de «figuras quiméricas». Estas consistían en dos medios rostros unidos para formar un rostro completo, pero con la particularidad de que la mitad izquierda del rostro era una fotografía de la persona A y la mitad derecha una fotografía de la persona B. Los sujetos con el cerebro dividido tenían que fijar la mirada en un punto de la pantalla, y a continuación se les proyectaba la figura quimérica. De este modo, el cerebro izquierdo veía la mitad derecha del rostro de la persona B, y el cerebro derecho la mitad izquierda del rostro de la persona A. Después de la presentación del estímulo, se presentaba una serie de rostros y se le pedía al sujeto que seleccionara el que había visto. La serie de rostros entre los que tenía que elegir estaba formada por fotografías normales de rostros completos, de los que se habían sacado los medios rostros anteriormente presentados.

Los resultados mostraron que los sujetos respondían más a menudo a las caras presentadas al cerebro derecho que a las presentadas al izquierdo. Esto era fácil de comprobar: bastaba con observar la fotografía que elegía el sujeto después de cada ensayo. También se observó, aunque este dato no fue controlado experimentalmente, que el cerebro izquierdo de los sujetos con cerebro dividido tardaba mucho tiempo en aprender los nombres de las caras presentadas en el experimento. Se pensó que esto se debía al hecho de que el mecanismo de nombrar no podía coordinar su actividad propia (nombrar) con la actividad del analizador gestáltico (procesar las caras), dado que el analizador gestáltico estaba situado en el cerebro derecho,

mientras que el mecanismo de nombrar se localizaba en el izquierdo. También comprobamos que, cuando se les pedía a estos sujetos que describieran las caras que habían procesado en su cerebro izquierdo, siempre hacían observaciones acerca de características específicas tales como la calva, el bigote o las gafas. Se pensó que esto demostraba la naturaleza analítica del cerebro izquierdo en comparación con el carácter holístico del análisis proporcionado por el cerebro derecho.

Sin embargo, es posible hacer otras interpretaciones de los resultados obtenidos en este tipo de experimentos. Que los sujetos tiendan a preferir los estímulos del cerebro derecho no significa necesariamente que éste responda de manera más asertiva porque disponga de un analizador gestáltico especializado. La razón podría estar en la propia naturaleza del cerebro derecho: se trata, por definición, de un sistema de capacidades notablemente limitadas, lo cual le permite concentrarse completamente en procesar las caras. El hemisferio izquierdo, al tener en cuenta más aspectos de los estímulos, sale perdiendo ante el sistema más literal y directo del cerebro derecho.

Por otra parte, la observación de que los sujetos tenían dificultades para aprender los nombres de las caras carece completamente de sentido, a pesar de que se le prestó más atención que a los descubrimientos primarios. Lo que se hizo fue comparar el ritmo al que los cerebros izquierdos aprendían los nombres de las caras con el ritmo al que los estudiantes de *Caltech* aprendían a asociar un nombre con un dibujo. Esto, como suele decirse, es lo mismo que comparar manzanas con naranjas.

Finalmente, tampoco tiene sentido la observación de que las descripciones de las caras que realizaba el cerebro izquierdo mostrasen que éste era de naturaleza analítica en comparación con la naturaleza gestáltica del cerebro derecho. De qué otro modo puede describir una cara un

cerebro dotado de la facultad del habla si no es describiendo sus características manifiestas?

Dada la amplitud de las distintas interpretaciones a que daban lugar los datos, se hizo necesario llevar a cabo más experimentos. Los experimentos habían planteado cuestiones muy interesantes, y al cabo de unos años se puso de manifiesto que tales estudios constituían el fundamento en que se basaban las afirmaciones más generales, y también más irresponsables, acerca de las diferencias entre los cerebros izquierdo y derecho. Los primeros estudios los realizamos LeDoux y yo⁶.

En primer lugar nos aseguramos de que nuestros pacientes exhibían los mismos síntomas básicos que en el caso de W. J. La figura 4.1 muestra un dibujo realizado por P. S. al intentar dibujar un cubo con su mano derecha en comparación con su ejecución más hábil realizada con la mano izquierda. Utilizamos el mismo tipo de análisis que en el caso de W. J., y los descubrimientos que hicimos confirmaron lo que anteriormente habíamos observado. La mano izquierda, cuyo control motor corre a cargo esencialmente del cerebro derecho, especializado para tales tareas, tiene más habilidad para dibujar que la mano derecha, cuyo control corre a cargo principalmente del cerebro izquierdo o cerebro del lenguaje. ¿Pero qué quiere decir esto? ¿Estriba la diferencia entre ambas manos en la ejecución de la tarea, en la percepción o en ambas actividades a un tiempo? ¿Se produce esta diferencia en todos los sujetos? ¿Son superiores en tales tareas todos los cerebros derechos o sólo algunos?

Cuando publicamos por primera vez estos datos, Sperry, Bogen y yo pensábamos que se trataba de una diferencia relacionada con la ejecución de la tarea más que con su percepción. Había algo especial en la capacidad que el cerebro derecho tenía para captar una imagen visual y dar instrucciones al sistema motor sobre el modo

de dibujar la figura o de disponer los cubos para formar el modelo. El cerebro derecho poseía alguna capacidad de emparejamiento sensoriomotriz de la que carecía el cerebro izquierdo. La diferencia no parecía deberse a que el cerebro derecho fuera superior en la percepción misma de los objetos.

En la época en que sosteníamos esta interpretación todavía no habíamos realizado los experimentos clave que podían respaldarla. Simplemente parecía la interpretación más lógica. Años más tarde, LeDoux y yo realizamos los estudios apropiados trabajando con los pacientes de Dartmouth, y los resultados confirmaron fundamentalmente la noción de que el cerebro derecho está especializado en algún aspecto relacionado con la esfera de la ejecución, y no es superior en la percepción de los estímulos visuales. Estos estudios fueron bastante sencillos. En lugar de pedirle al paciente que ordenara los cubos para formar un modelo del estímulo, simplemente le pedíamos que intentara emparejar el estímulo con otra serie de dibujos ya confeccionados. En otras palabras: no tenía que manipular los cubos. La tarea consistía sencillamente en hacer emparejamientos de unas figuras con otras8. En estas condiciones desaparecieron las diferencias entre los dos cerebros. Por consiguiente, se concluyó que el cerebro derecho parecía ser superior en aquellas tareas que suponían la manipulación de objetos con la mano izquierda. Esta diferencia todavía se mantiene en todos los pacientes.

Con todo, estábamos ya dispuestos a comprobar la historia del estímulo quimérico. Elaboramos una serie de estímulos que imitaban los estímulos quiméricos empleados en los primeros experimentos. Repetimos el experimento principal con P. S., del que en breve pasaré a ocuparme en detalle. Con este paciente pudimos realizar el experimento muy poco después de su operación de sepa-

ración del cerebro, lo que es un dato a tener en cuenta, ya que en el caso del estudio de Levy todos los pacientes habían sufrido la operación varios años antes de que se les hiciesen las pruebas.

P. S. fue capaz de identificar y señalar ambos estímulos inmediatamente, el medio rostro derecho proyectado al cerebro izquierdo y el medio rostro izquierdo proyectado al derecho. En los primeros días posteriores a la operación no aparecía tendencia alguna a que un cerebro respondiera más que otro. Pero lo que resulta de extraordinario interés es el hecho de que, cuando volvimos a pasar las pruebas un año después de la operación, el cerebro derecho se había vuelto más resolutivo y producía la mayor parte de las respuestas. Posteriormente se ha hallado este mismo resultado en otros pacientes. ¿Por qué?

¿Por qué en una familia ocurre casi siempre que una persona hace el desayuno y su pareja la cena? Es poco práctico que marido y mujer hagan ambas labores aunque los dos sean capaces de hacerlo. Puesto que suele haber una sola cocina, se adopta una resolución comportamental: una persona se ocupa de una de las tareas y otra persona de la otra. Lo mismo pasa en el caso de un cerebro izquierdo y un cerebro derecho que trabajen en el mismo cráneo. En el sistema nervioso existe lo que se denomina la «ruta final común», concepto que se refiere al grupo de neuronas que parten del cerebro e inervan los brazos y las piemas. Emparejar figuras de formas, caras y cosas por el estilo es algo que puede hacer el cerebro derecho, que por regla general no puede hablar. Por eso se llega a un acuerdo tácito: el cerebro izquierdo se ocupa del habla y el derecho de tareas de emparejamiento más sencillas. Este tipo de división comportamental del trabajo puede llevar a pensar, equivocadamente, que hay especialización cerebral o formas hemisféricas de pensamiento, cuando en realidad no es así.

También resultó ser falsa en la mayor parte de los casos la observación informal de que los sujetos con el cerebro dividido tardaban mucho tiempo en aprender los nombres de las caras. En pruebas pasadas explícitamente para ver si uno de los cerebros tenía o no dificultades para aprender el nombre de una cara, el cerebro izquierdo demostró la misma facilidad que el derecho. Naturalmente, en esta prueba utilizamos estímulos faciales que eran lo suficientemente diferentes unos de otros como para que cada mitad del cerebro pudiera distinguirlos fácilmente.

A pesar de estos datos, no han dejado de aparecer informes que señalan que los pacientes con lesiones en el lado derecho del cerebro tienen muchísimas dificultades para recordar caras normales que tenían más similitudes que diferencias. Así, por ejemplo, en una serie de experimentos realizados por Robin Yin en el M.I.T. (Instituto de Tecnología de Massachusetts), se utilizaron como estímulos caras que no se confundían porque tenían gafas, bigote o cualquier otra característica que podía ayudar a distinguir unos estímulos de otros haciéndolos fácilmente identificables con un código verbal9. Pensábamos que si fuesen ciertos estos resultados, el cerebro derecho desconectado del izquierdo podría resolver muy bien la tarea de reconocer esas caras, mientras que el cerebro izquierdo la resolvería mal. Volvimos al laboratorio y aplicamos esta prueba a los pacientes. En este caso eran V. P. y P. S., los cuales tenían la capacidad de hablar con el cerebro izquierdo y con el derecho, y J. W., que sólo podía hablar con el cerebro izquierdo¹⁰.

En cada prueba se presenta una cara al cerebro izquierdo y se le pide al paciente que seleccione otra cara igual entre una serie de 10. El cerebro izquierdo de todos los pacientes realizó mal la tarea. Sin embargo, para el cerebro derecho resultó una tarea sencilla y la realizó bien. Esta situación persiste durante años después de la operación, incluso en los pacientes cuyos cerebros derechos han mostrado plasticidad en el desarrollo del lenguaje. La plasticidad que mostró el cerebro derecho a este respecto no se observó en el cerebro izquierdo en la capacidad de percepción facial. Este estudio parece apoyar la idea de que en el cerebro derecho hay un sistema especializado en el control del procesamiento de este tipo de estímulos. En estudios adicionales se comprobó que la habilidad perceptiva en cuestión no residía en la percepción de las caras en sí, sino en la percepción de estímulos que excedían la capacidad que tiene un sistema verbal para describir su naturaleza. Por ejemplo, una serie de investigaciones sobre la diferencia entre líneas de luz con orientaciones ligeramente distintas también mostraron esta superioridad por parte del cerebro derecho.

Otros investigadores que también estudiaron a los mismos pacientes de California han diseñado otros tipos de pruebas. Especialmente interesante fue la realizada por Robert Nebes¹¹. El paciente tenía que sostener en una mano una forma geométrica recortable semejante a un triángulo. Si el sujeto sostenía el objeto en su mano izquierda, procesaba la información el cerebro derecho; si lo sostenía en la derecha, entonces la procesaba el cerebro izquierdo. A continuación, Nebes mandaba al paciente señalar una de las tres figuras que se le presentaban, cada una consistente en un dibujo esquemático, hecho con líneas, de una forma geométrica, entre las cuales estaba el triángulo. La tarea consistía en señalar la figura correcta. Nebes descubrió que la mano izquierda realizaba la tarea mucho mejor que la derecha. De acuerdo con las conclusiones de Nebes y otros, estos resultados indicaban que el cerebro derecho era superior a la hora de aprehender la información visual, puesto que parecía capaz de sintetizar

los elementos figurativos con mayor eficacia que el cerebro izquierdo.

Estas interpretaciones presentan varios problemas. Para situar la escena y poder hacer una crítica apropiada, permítaseme describir otro experimento más, éste realizado por la doctora Brenda Milner y su colega Laughlin Taylor del Instituto Neurológico de Montreal. Estos autores estudiaron a los mismos pacientes y descubrieron que la mano izquierda era capaz de reconocer formas irregulares al tacto con mucha mayor precisión que la derecha. Las formas consistían en figuras irregulares hechas con alambre que el sujeto tenía que tocar con la mano para, a continuación, hallar exactamente el mismo objeto entre un grupo de cuatro. Se trata de una sencilla prueba de identificación táctil que la mano izquierda realizaba rápidamente, pero no así la mano derecha. De este modo, una predisposición natural del cerebro permite a la mano izquierda procesar mejor que la derecha la información táctil difícil de verbalizar.

Nosotros hemos reproducido estos mismos resultados con algunos de nuestros pacientes. La predisposición interna para el procesamiento de la información táctil de tipo no verbal parece ser una propiedad especial del cerebro derecho. Pero lo que LeDoux y yo demostramos fue que la asimetría entre ambas mitades del cerebro no se relacionaba con la aprehensión perceptiva de por sí. De este modo, si la prueba se llevaba a cabo en la modalidad visual, no se observaban asimetrías. Es decir, si se le presentaba al cerebro derecho o al izquierdo un dibujo de una de las figuras irregulares de alambre, cualquiera de los dos hemisferios podía señalar la figura de que se trataba.

Cada vez parecía más evidente que los resultados que indicaban la existencia de asimetrías perceptivas se debían a algún rasgo específico del cerebro derecho relacionado con la utilización de la mano izquierda. Con esta idea en

mente, volvimos a examinar el estudio de Nebes sobre las figuras esquemáticas. Como ya he dicho, se presentaba un dibujo de una de las formas geométricas a cualquiera de las mitades del cerebro. Cuando la fase de prueba se realizaba dentro de la modalidad visual, ambos hemisferios podían señalar fácilmente cuál de las figuras esquemáticas correspondía a la que habían visto en la fase de presentación. Sin embargo, el fenómeno de la asimetría volvía a aparecer cuando la fase de prueba se realizaba dentro de la modalidad táctil. Mediante el tacto, la mano izquierda hallaba con facilidad la respuesta correcta (la figura esquemática proyectada al cerebro derecho). Pero la mano derecha (cuvo control corre a cargo del cerebro izquierdo) realizaba mal la tarea, es decir, no acertaba a elegir la figura proyectada al cerebro izquierdo. Al menos, éstos fueron los resultados que obtuvimos con algunos pacientes. Y en otros casos no hallamos rastro de asimetría bajo ninguna condición.

Y, además, aún hay otro problema. Muestran todos los pacientes el mismo tipo de asimetría izquierda/derecha en este tipo de tareas? Considérese el caso de J. W. Le encantan los coches y resulta evidente que es un artista de talento. Antes de la operación, dibujó docenas de coches con su mano derecha, pues es diestro. Según la jerga actual sobre los procesos del cerebro derecho y del cerebro izquierdo, diríase que, antes de la operación de W. J., tales procesos eran mediados realmente por el cerebro derecho, pero que el cuerpo calloso enviaba la información al cerebro izquierdo, el cual la utilizaba para dirigir la respuesta de la mano derecha. Después de la operación de separación completa del cerebro, no se observaron diferencias en la calidad de los dibujos que W. J. seguía realizando. Ambas series de dibujos son excelentes, a pesar de que, como sabemos, dibujó la segunda serie en una época en la que no podía guiar su mano derecha desde el hemis-

ferio derecho, lo cual significa que la realización de los dibujos se tuvo que realizar bajo la dirección del cerebro izquierdo (W. J. dibujaba además preciosos cubos con ambas manos).

Lo que sucede sencillamente es que no todos los cerebros están organizados del mismo modo. Determinadas habilidades especiales, como las observadas en W. J., pueden localizarse en el cerebro derecho o en el izquierdo. Evidentemente, lo importante no es el lugar donde se sitúen las habilidades, sino el hecho de que distintos sistemas cerebrales se ocupen de tareas específicas. Empezamos a comprender que la naturaleza del cerebro es modular, una característica que se deriva de todos los datos analizados. La cuestión de si los módulos deberían localizarse siempre en el mismo lugar sólo tiene una importancia secundaria. Como consecuencia de este punto de vista, gran parte de la investigación sobre el cerebro dividido debería considerarse como una técnica que sirve para poner de manifiesto la modularidad. Es decir, el hecho de que el cerebro derecho haga una cosa y el izquierdo otra no tiene importancia. Lo que importa es que, al estudiar pacientes con los hemisferios cerebrales separados, es posible observar aisladas ciertas habilidades mentales. Se trata de un hecho extraordinariamente significativo.

Es evidente, por tanto, que pueden detectarse asimetrías en el procesamiento de la información. Este fenómeno puede estar bien establecido o resultar sorprendente, pero no cabe duda de que se trata de uno de los más difíciles de caracterizar con precisión. Además, no todos los hemisferios manifiestan dicha asimetría. Algunos investigadores sugieren que se trata de una asimetría de naturaleza perceptiva, mientras que otros la consideran ligada a un tipo de respuesta de naturaleza manual; todavía otros, como es mi caso, se preguntan si

no se trata de una asimetría más aparente que real. Empleando una metáfora informática, podríamos formularnos la siguiente pregunta: ¿reflejan estas asimetrías una diferencia funcional o de software entre los dos cerebros, o se trata más bien de una diferencia de tipo estructural, basada en la arquitectura física o hardware? Para responder a esta cuestión hay que tener en cuenta lo siguiente.

En lugar de explicar el fenómeno diciendo que el cerebro derecho dispone de un módulo especializado para el procesamiento de la información táctil, podría suceder que, en unas condiciones estimulantes que frustren su disposición natural a codificar un estímulo, el cerebro izquierdo asigne más recursos para intentarlo, de manera que se centraría menos en la sencilla tarea de prestar atención a las características principales del estímulo, precisamente aquellas que le permitirían realizar un emparejamiento perceptivo posterior. El cerebro derecho, que no dispone de un aparato generador de hipótesis tan productivo, asigna todos sus recursos a la sencilla tarea de la que se ocupa y, por consiguiente, obtiene mejores resultados que el cerebro izquierdo en aquellas tareas perceptivas que requieren mucha memoria. Actualmente no se puede excluir una interpretación de este tipo. En realidad, en este momento yo la prefiero a todas las demás, puesto que puede explicar casi todos los datos relativos a la dicotomía izquierdo/derecho.

A finales de los años 60 y principios de los 70 comenzó a difundirse la idea de que las dicotomías simples de esa época apenas servían para hacernos avanzar en el conocimiento de cómo funcionan los sistemas cognitivos. La neuropsicología estaba en peligro. Aislar los sistemas mentales o afirmar que los sistemas mentales aislados procesan información de forma diferente no

sirve realmente para aclarar la naturaleza de la cognición. La comprensión de este hecho dio lugar a la mayoría de las nuevas investigaciones que comenzaron a realizarse con los pacientes de la costa Este de Estados Unidos.

Capítulo 5 Los mecanismos cerebrales y la formación de creencias

La mayor parte de las personas que se dedican a la ciencia no permanecen ancladas en un único problema. Desde fuera de la ciencia, puede parecer que sí porque, de hecho, en muchas ocasiones los científicos funcionan descubriendo que están interesados en determinados tipos de problemas, que son precisamente aquellos sobre los que escriben. Con todo, en una carrera científica típica, en la que lo normal es trabajar durante mucho tiempo sobre un tema, uno siempre termina por aburrirse. Cuando esto ocurre, se toman descansos y se intenta comprender y dirimir otras cuestiones. A partir de estas experiencias se consigue algo positivo, pero por lo general la mente vuelve a sus intereses originales. Yo acabaría por retomar la investigación sobre el cerebro humano dividido, pero lo haría adoptando un enfoque completamente diferente del que habíamos desarrollado en Caltech. Los nuevos estudios proporcionaron a la larga ideas sobre la formación de creencias en los seres humanos. Pero, como ya he

mencionado, antes de continuar la investigación sobre el cerebro dividido coqueteé con otras ideas.

Dejé California en 1969 y me ajusté a la vida ascética de la costa Este. Después de abandonar Caltech en 1966, pasé unos meses en Pisa con mi buen amigo Giovanni Berlucchi. Disciplinado, muy inteligente y atento, Berlucchi puso todo su empeño en hacer de mí un neuropsicólogo. Nuestra misión era ni más ni menos que intentar descubrir el código del cerebro. Durante el año que estuvo de visita en Caltech, Berlucchi se había interesado, al igual que yo, por el cuerpo calloso. Desde que supimos que cortando la estructura se suprimía la transferencia de aprendizaje y memoria entre los dos cerebros, decidimos estudiar la respuesta de las células individuales de este «cable de la mente» y ver si podíamos comprender su funcionamiento. Nuestros esfuerzos iban a Îlevarnos a obtener algunos de los primeros registros de las células individuales del cuerpo calloso, no sólo en Italia, sino en el mundo. Berlucchi y su colega, Giacomo Rizzolatti, continuaron sus investigaciones electrofisiológicas, las cuales llegaron a ser una piedra angular a la hora de analizar los procesos individuales de transferencia que se producen entre las dos mitades del cerebro.

Esta experiencia resultó muy estimulante para mí, y fue un placer observar cómo mis colegas italianos elaboraban la nueva tecnología para el registro de células individuales en un laboratorio jardín de Pisa. Los italianos trabajan con un único fin. Aun cuando haya momentos de relajación a lo largo del camino, nada los detiene una vez que aplican sus mentes a la resolución de una tarea.

Una tarde, después de semanas de preparación del laboratorio, todo estaba dispuesto para el registro del cuerpo calloso. El complejo equipo electrofisiológico estaba listo; los amplificadores estaban sintonizados para registrar el primer cruce de células nerviosas entre las dos mitades del cerebro de un gato. El gato estaba inmóvil mirando una pantalla en la que se presentaban los estímulos visuales y se registraba la respuesta neural esperada. El microelectrodo estaba justo encima del cuerpo calloso, a punto de ser introducido en la estructura que iba a ser crucial para el código del cerebro. Unos 15 científicos se agolpaban expectantes en la pequeña sala de registro.

Rizzolatti introdujo el electrodo en el cuerpo calloso. Exactamente en el mismo momento en que el electrodo alcanzó el objetivo, se cerró un circuito eléctrico de tierra y, en lugar del chasquido característico de una neurona, comenzamos a oír los sonidos de la canción de los Beatles, «El submarino amarillo», que salían a raudales por el altavoz. Rizzolatti levantó la vista, se quitó sus gafas y dijo: «¿Es esto información de nivel superior?»

Dejé Italia y toda esta investigación para regresar a la Universidad de California en Santa Bárbara. Era un período de transición. Cuando volví a pedir una beca de tiempo completo para continuar mis investigaciones sobre el cerebro dividido tanto en animales como en humanos, me dijeron que mis esfuerzos con los sujetos humanos no eran apreciados por parte del grupo de Caltech. Aunque mis planes para estudiar a los pacientes de Santa Bárbara habían sido aprobados precisamente en Caltech antes de mi marcha, las cosas habían cambiado de modo predecible. Al principio me enfadé, pero mi desilusión con la Universidad de Santa Bárbara hizo que se me pasase pronto el enfado. Santa Bárbara era un lugar precioso, pero soporífero. Leon Festinger, a quien había conocido por esa época, acababa de trasladarse desde Stanford a Nueva York. Nos habíamos encontrado en un seminario que yo impartí en Stanford y nos hicimos rápidamente amigos. Después de fundar el campo de la moderna psicología social, Festinger se interesó por la percepción visual. Me llamó desde la New School de Nueva

York, en la que había aceptado un puesto, y me dijo: «La N.Y.U. (Universidad de Nueva York) necesita un psico-fisiólogo; ¿quieres el puesto?» Después de una corta negociación y de haber cambiado de idea unas veinte veces, acepté el puesto.

Los californianos que llegan a Nueva York están entre los grupos de gente más exasperantes del mundo. No hacen más que hablar de la buena vida y del buen clima de su tierra; pueden ser insoportables. Yo era uno de ellos hasta que me sentí arrobado por Nueva York. Primero a través de su gente y luego mediante sus restaurantes Nueva York te conquista. La magnífica facultad de la Universidad de Nueva York te daba todo su apoyo. La gente tenía unos intereses más amplios y la información extracurricular circulaba con rapidez. Además, estaba Festinger, que es una universidad andante. Todas las semanas comíamos juntos y charlábamos de todo, desde los globos oculares hasta la estructura social. Vivir en un lugar que tiene una vida social tan intensa como Nueva York hace que uno se dé perfectamente cuenta de las dimensiones sociales del trabajo. La vida de Nueva York lo invade todo.

Además de mis estudios con humanos, siempre había realizado amplios estudios experimentales con animales. Las ideas desarrolladas a partir del trabajo con los pacientes podían investigarse más detalladamente y con mayor control en experimentos con animales. A mi llegada a Nueva York, me puse rápidamente a montar un laboratorio para hacer experimentos con monos. Habían venido conmigo varios estudiantes de Santa Bárbara, que trabajaron sin descanso para que todo estuviese listo lo antes posible. En el aspecto clínico mis contactos con los hospitales tenían algo de casuales. Hans-Lukas Teuber, el entonces carismático director del departamento de psicología del M.I.T. (Instituto de Tecnología de Massachu-

setts), me presentó al jefe del Medical Center (Centro Médico) de la N.Y.U. Fui a ver al director, que casualmente se alojaba en el mismo sitio que había ocupado Teuber en la Universidad de Nueva York antes de trasladarse a Boston. Yo quería comenzar un nuevo proyecto con pacientes neurológicos que padeciesen problemas de lenguaje, y el Medical Center me parecía el lugar idóneo. El director me recibió con aire de superioridad médica y me dijo: «¿Ve usted estos laboratorios? Eran los laboratorios de neuropsicología de Teuber. Yo personalmente creo que la neuropsicología no es más que un montón de basura. Bueno, ahora dígame qué es lo que quiere hacer.» Musité algo sobre la importancia del cerebro para comprender el comportamiento y abandoné su despacho con cierto alivio. Sin mucho esfuerzo encontré otro lugar, éste mucho más agradable: el Hospital de Rehabilitación de la Universidad de Nueva York.

Pero echaba de menos la investigación sobre el cerebro dividido en humanos. Conocía los problemas y los temas que se trataban, y podía leer con ojo crítico los artículos que no dejaban de publicarse, ya que los estudios se llevaban a cabo con pacientes que había sido yo el primero en identificar. Sabía que la línea de investigación que seguían en *Caltech* a principios de los años 70 se topaba con muchos problemas y limitaciones, pero no tenía forma de verificar y respaldar mis propias ideas.

Por entonces, la Facultad de Medicina del Dartmouth College me pidió que diera una charla, lo que me causó una gran satisfacción. Era como volver a la propia casa pero, como dice la expresión, «desde el otro lado del escritorio». Después de dar la conferencia, se acercó a mí un neurocirujano llamado Donald Wilson y, para mi sorpresa, me preguntó si estaba interesado en realizar pruebas con algunos de sus pacientes con cerebro dividido.

practicado este tipo de intervenciones durante dos años y tenía varios pacientes, ninguno de los cuales había sido estudiado por un neuropsicólogo. Me apresuré a aprovechar la oportunidad y desde entonces no he dejado de tener una relación activa con Dartmouth.

La serie de pacientes que mis colegas y yo examinamos procedían de diferentes centros médicos del Este. Pero antes de hablar de los pacientes, permítaseme contar algo sobre las personas que participaron en los aspectos médicos y científicos de este trabajo. Al doctor Donald Wilson, de Dartmouth, se le atribuye el mérito de haber desarrollado la cirugía hasta el magnífico estado en que se encuentra en la actualidad. Participó activamente en los aspectos médicos de la investigación y apoyó de principio a fin nuestros esfuerzos. El doctor Wilson murió en 1982; los que trabajamos con él lo echamos muchísimo de menos. Era un auténtico caballero. Me alegra decir que su protegido, el doctor David Roberts, continúa practicando estas habilidades médicas tan necesarias en la comunidad de Nueva Inglaterra. Además de trabajar en la Dartmouth-Mary Hitchcock Clinic, mis colegas y yo también estudiamos un paciente procedente del Medical College de Ohio, donde el doctor Mark Rayport dirige un programa de control quirúrgico de la epilepsia. Algunos años antes, el doctor Rayport comenzó sus operaciones, en gran parte inspiradas por el éxito del doctor Wilson. Es un cirujano veterano que disfruta de una gran reputación debido a su experiencia en cirugía. También estudiamos pacientes procedentes de Yale y de la Universidad de Minnesota.

Desde 1972 he venido trabajando en colaboración con una serie de estudiantes y becarios de investigación de gran talento. Los primeros estudios los hicimos en su mayor parte Joseph LeDoux, Gail Risse y Pamela Greenwood. Compramos una caravana de segunda mano, la convertimos en un laboratorio móvil y a lo largo de cuatro años la arrastramos enganchada a una furgoneta durante las excursiones mensuales que realizábamos a Nueva Inglaterra. La paliza que nos dábamos quedaba compensada por la ilusión de ir allí y hacer el trabajo.

Dejé la Universidad de Nueva York en 1972 y acepté una atrayente propuesta de la State University de Nueva York en Stony Brook. En esta localidad, un grupo de nuevos estudiantes abordaron conmigo los problemas de la investigación sobre el cerebro dividido. En 1977 trasladé mi laboratorio desde Stony Brook hasta la Cornell Medical School, en la ciudad de Nueva York. La vuelta a Nueva York fue estimulante y me sumergí por completo en el trabajo. Joseph LeDoux, alumno mío y hombre de inagotable generosidad, también vino conmigo antes de irse a trabajar por su cuenta. Como punto de arranque de la investigación sobre el cerebro dividido, LeDoux presentó una solicitud de subvención a la National Science Foundation (NSF) en la que se incluía una petición de equipo para una caravana motorizada GMC de 26 pies de longitud. Irónicamente, la justificación de su presupuesto para la caravana fue lo suficientemente convincente como para que la NSF nos concediera la caravana pero no el resto de la subvención. Conforme a los informes que se filtraron hasta nosotros, el jurado encargado de redactar los informes captó el espíritu de nuestros viajes, como si se tratase de la obra de Steinbeck Travels with Charley («Viajes con Charley»). Los que no viajan siempre parecen decepcionados cuando los demás parten. Por lo general los viajes son aventuras científicas, pero siempre abundan las risas y los buenos ratos.

Resulta maravilloso trabajar con el personal de investigación con el que estás habituado a trabajar. Hasta su repentina y trágica muerte, Jeffrey Holtzman, alumno de Leon Festinger, no dejó de hacernos reír con sus ideas tan

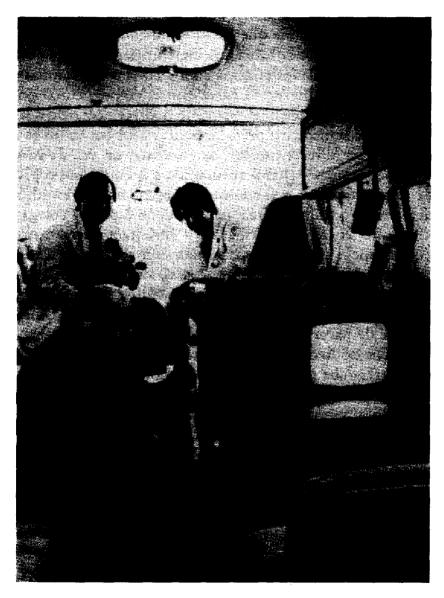


FIGURA 5.1. Aspecto del interior de nuestra querida furgoneta con el material y mis estimados colegas John Sidtis y el fallecido Jeff Holtzman.

personales sobre casi todas las cosas; era un hombre leal, alegre e ingenioso. También está John Sidtis, una persona juiciosa y responsable que había estudiado en Columbia y al que en ocasiones había que impedir por la fuerza que exigiera comodidades urbanas en los hoteles y restaurantes de la Nueva Inglaterra rural. Bruce Volpe, neurólogo e internista de formación —que, de haberse dedicado a la práctica de la medicina privada, podía haber hecho los estantes de su librería con oro de 18 kilates en vez de con cajas de naranjas—, había sucumbido a la emoción propia de la investigación y al enfoque experimental del estudio del sistema cognitivo. Finalmente está mi esposa y colega, Charlotte Smylie. Las brillantes y encantadoras maneras de mi esposa no sólo le permitían controlar la manada que formábamos (por algo es tejana), sino también realizar la mitad de los experimentos cuando no conducía el furgón escuchando a Emmylou Harris. Teníamos la costumbre de hacer uno de nuestros viajes a Nueva Inglaterra el Día de Acción de Gracias; todos los años, Charlotte se las arreglaba para convertir el laboratorio móvil en un comedor, con candelabro fabricado de papel de aluminio incluido, y servir de cena un menú de cuatro platos en el que no faltaba el pavo. Siempre era el mejor viaje del año.

Nuestros primeros pacientes de Dartmouth no resultaron especialmente interesantes. En lo fundamental confirmaron los aspectos más neurológicos que habíamos hallado en los pacientes de California. Un hemisferio no podía comunicarse con el otro; el cerebro izquierdo tenía la capacidad de hablar pero el derecho no, etc. Entonces apareció el caso de P. S., el paciente que inauguró una forma completamente nueva de ver la lateralización y los mecanismos cerebrales implicados en la experiencia consciente. Hemos dedicado y continuamos dedicando mucho tiempo y esfuerzos a la comprensión de P. S., así como a otros dos casos similares, V. P. y J. W., que llega-

ron inmediatamente después de P. S. Comenzaré la historia hablándoles de estos tres extraordinarios seres humanos.

P. S. es un muchacho de 15 años que vivía en un parque de caravanas en Vermont; padece epilepsia. Esta enfermedad es una de las principales preocupaciones en las colinas de Vermont y New Hampshire, donde es bastante común. P. S. fue enviado al *Dartmouth Medical Center* para intentar controlar sus ataques. La medicación no había resultado eficaz y no parecía posible que llevase una vida normal.

El doctor Alexander Reeves, neurólogo de talento y responsable de los servicios de neurología, había intentado controlar la epilepsia probando distintas drogas, controlando los niveles de sangre y utilizando todos los métodos que son menos invasivos que la cirugía del cerebro, pero ninguno resultó eficaz. P. S. se convirtió de este modo en candidato a una operación de cerebro dividido. Como era habitual, nos llamaron y fuimos a pasar las pruebas preoperatorias a P. S.

Arrastrando nuestro remolque, llegamos al parque de caravanas. Uno se olvida de que hay personas que viven en caravanas, formando ciudades pequeñas y sombrías. Llamé a la puerta de una caravana y salió a recibirme este muchacho de enorme energía al que llegaríamos a tomar cariño. P. S. es un adolescente de inteligencia media baja y con los mismos conflictos y aspiraciones que un joven «normal». Le gustaría ser programador de ordenadores, electricista y piloto de coches de carreras; quiere irse a Boston, enamorarse, etc.

P. S. demostró ser normal en todos los aspectos de acuerdo con nuestras pruebas. Podía nombrar sin dificultad la información sensorial que se le presentaba tanto en su campo visual izquierdo como en el derecho. Lo mismo pasaba cuando se le presentaba información táctil en am-

bas manos. No pudimos evaluar la modalidad auditiva debido a que P. S. había perdido la audición en su oído derecho.

P. S. fue operado en enero de 1975. Resultó ser un paciente extraordinariamente sorprendente: confirmó los primeros estudios de California y, a la vez, nos mostró que la historia del cerebro dividido era mucho más rica de lo que nos habíamos imaginado¹. Le pasamos pruebas al mes siguiente de practicársele una operación de separación completa del cuerpo calloso. P. S. era una persona singular; todas las habilidades normales, tales como la especialización lateral para dibujar cubos, la ordenación de bloques y otras habilidades del hemisferio derecho estaban presentes; y aunque podía hablar normalmente de las experiencias que tenían lugar en su cerebro izquierdo, no podía hacerlo cuando éstas tenían lugar en el derecho. Para mí esta diferencia no constituía una novedad. El nuevo descubrimiento derivado de esta serie de pacientes fue que P. S., al igual que dos de los 15 pacientes de California que habíamos estudiado al principio, podía comprender el lenguaje con el hemisferio derecho, algo que no es frecuente.

Una prueba típica para evaluar el lenguaje del hemisferio derecho consiste en proyectar palabras en la parte izquierda del campo visual. El paciente suele afirmar que no ve nada (es el hemisferio izquierdo el que dice no ver nada), y la prueba parece estar concluida. No obstante, si se colocaba la mano de P. S. debajo de una mesa en la que se habían dispuesto varios objetos, P. S. elegía el objeto apropiado después de palparlos; es decir, elegía aquél cuyo nombre había sido proyectado en la parte izquierda del campo visual. Su hemisferio derecho comprendía el significado de los nombres, al igual que ocurría con los dos pacientes de California.

Sin embargo, y a diferencia de los anteriores pacientes,

P. S. podía seguir órdenes presentadas al cerebro derecho. Si proyectábamos el verbo «sonreír», P. S. sonreía; si proyectábamos la palabra «tamborilear», golpeaba con la mano la mesa que tenía delante. Su hemisferio derecho podía responder a órdenes verbales. Esta capacidad era única por entonces, y anunciaba un enorme número de interesantes características del síndrome del cerebro dividido.

El caso de V. P., una mujer, nos llegó de Ohio. El doctor Rayport nos llamó para preguntarnos si estábamos interesados en estudiarla. Naturalmente que lo estábamos, y la hicimos venir en avión a Nueva York. Cuando la vimos ya había sido operada. En este caso la operación se había realizado en dos fases, seccionando la mitad anterior del cuerpo calloso en la primera fase y la mitad posterior 10 semanas después. V. P. es una joven simpática, obediente y muy sociable, que pone todo de su parte para agradar. Está divorciada y vive con su hija. Los padres de V. P., como los de la mayoría de los pacientes, tienen un enorme interés en su bienestar y la cuidan con un cariño y una preocupación especiales.

Desde la primera visita, supimos que V. P. sería otro caso especial. Al igual que sucedió con los pacientes anteriormente mencionados, V. P. presentaba inicialmente los síntomas completos del síndrome en su forma clásica. Su hemisferio derecho estaba especializado para ciertas tareas y el izquierdo no podía hablar sobre los acontecimientos que tenían lugar en el cerebro derecho².

Pero las semejanzas no pasaban de ahí. Como P. S., V. P. poseía una enorme capacidad lingüística en su hemisferio derecho y también podía seguir órdenes. Aunque en un principio no podía hablar de las experiencias que tenían lugar en su cerebro derecho, podía escribir mensajes sobre la información presentada al mismo. El análisis que hicimos de estos fenómenos lo presentaremos después de ver el caso de nuestro próximo paciente, J. W.

J. W. es otro de los pacientes de la serie de Dartmouth. Su epilepsia comenzó más tarde, a la edad de 19 años, y le ocasionó graves trastornos sociales. Se había divorciado dos veces y había tenido continuos problemas en su pequeña ciudad de Nueva Inglaterra. Muy preocupados, sus padres lo llevaron al doctor Wilson, quien después de realizar una meticulosa revisión junto con el doctor Reeves, decidió que una operación de división del cerebro era la única solución. Como en muchos otros casos, la cirugía resultó estabilizadora y de mucha ayuda.

En el caso de J. W. la operación también se practicó en dos fases, y pudimos pasarle las pruebas antes y después de la operación, pero también entre las dos fases de la misma³. Esta oportunidad de estudiar a J. W. entre las dos fases de la operación nos permitió hacer algunas interesantes observaciones acerca de cómo tiene lugar la transferencia de información entre los dos hemisferios. J. W. tenía un perfil psicológico parecido a los dos casos más representativos de California, L. B. y N. G., que había analizado por vez primera en mi tesis. Estos dos casos se convirtieron en la base de los estudios que prosiguieron en California tras mi marcha. El caso de I. W. tendía un puente entre las dos series de pacientes y proporcionaba la oportunidad de realizar comparaciones apropiadas. Esto era posible porque, aunque J. W. podía comprender el lenguaje con su hemisferio derecho, en lo cual era semejante a V. P. y P. S., su comprensión no era, sin embargo, tan buena por término medio. Ni qué decir tiene que mostraba todos los demás efectos normales propios de los pacientes con el cerebro dividido.

Estos tres pacientes son los sujetos de la mayor parte de nuestros estudios. Hay otros muchos pacientes con el cerebro dividido, pero no hablaré de ellos aquí por diversas razones, la más importante de la cuales estriba en que la mayoría de ellos carecen de lenguaje en su hemisferio

derecho. Después de la operación es frecuente observar que el hemisferio izquierdo continúa con sus hábitos lingüísticos. Los sujetos pueden nombrar sin problemas la información presentada en el campo visual apropiado o los objetos colocados en la mano derecha. Pero, a diferencia de los casos de J. W., V. P. y P. S., cuando se les presentaba información al cerebro derecho, no se obtenía respuesta alguna. Además de no tener capacidad lingüística, el cerebro derecho de esos pacientes se caracteriza por una inactividad comportamental tan notable que bordea el tedio. Esto no significa que esos hemisferios derechos carezcan de sistemas especializados; puede que dispongan de ellos, pero es casi imposible demostrar su existencia en un sistema cerebral tan incapaz de dar muestras públicas de comportamiento como el de estos pacientes.

Casos como los de J. W., V. P. y P. S. son raros, por lo que plantean la cuestión de si es acertado construir todo un conjunto de observaciones basándonos en una minoría de casos. No creo que esto sea un problema, ya que los estudios de los que voy a hablar no pertenecen a la típica variedad de cerebro derecho/cerebro izquierdo, es decir, a los que exploran las posibles diferencias entre ambos hemisferios. A este respecto, los datos sobre el cerebro dividido se incluyen en el contexto de otros estudios clínicos y de sujetos normales que realmente permiten tales observaciones.

El planteamiento que voy a adoptar aquí es distinto. Voy a describir cómo los hemisferios izquierdos de nuestros tres pacientes se ocupan de las conductas asertivas elaboradas por sus cerebros derechos. A partir del análisis minucioso de estos fenómenos, espero poder mostrar de qué modo estas ideas aportan pistas para la comprensión de nuestros procesos conscientes.

Pensemos en la vida cotidiana de estos pacientes. El

hemisferio dominante, normalmente el izquierdo, se ocupa del mundo, delimita sus problemas, planifica la acción, da cuenta del estado de ánimo del cuerpo, etc. Supongamos, por ejemplo, que el cerebro derecho decide inesperadamente que el paciente dé un paseo: ¿qué hace el cerebro izquierdo en un caso como este?, ¿qué piensa? Expresándolo en términos más generales, ¿qué impresión producen en el cerebro izquierdo las actividades iniciadas por el cerebro derecho?

Este tipo de cuestiones puede encontrar respuesta examinando al paciente bajo estrictas condiciones de laboratorio. La figura 5.2 presenta un típico experimento, el primero que LeDoux y yo mismo realizamos sobre estas cuestiones⁴. En resumen, el experimento plantea un problema conceptual sencillo a los hemisferios. Se presenta un dibujo distinto a cada hemisferio; en este caso, el cerebro izquierdo ve el dibujo de una pata, mientras que, al mismo tiempo, el derecho ve el dibujo de un paisaje helado. Delante del paciente hay una serie de tarjetas que representan las posibles respuestas a la cuestión implícitamente planteada de qué dibujos pueden asociarse entre sí. La respuesta correcta para el hemisferio derecho es la tarjeta con el dibujo del pollo; y para el hemisferio derecho, la de la pala.

Después de proyectar un dibujo a cada mitad del cerebro, se pide a los sujetos que señalen la respuesta correcta. Una respuesta frecuente es la de P. S., el cual señaló el pollo con su mano derecha y la pata con la izquierda. Después de responder, le pregunté: «¿Paul, por qué señalaste eso?» Paul levantó la vista y, sin dudarlo un momento, respondió con su hemisferio izquierdo: «Muy fácil. La pata de pollo va con el pollo y la pala es necesaria para limpiar el gallinero.»

En este caso la cuestión estribaba en que el cerebro izquierdo explicase por qué la mano derecha había señalado

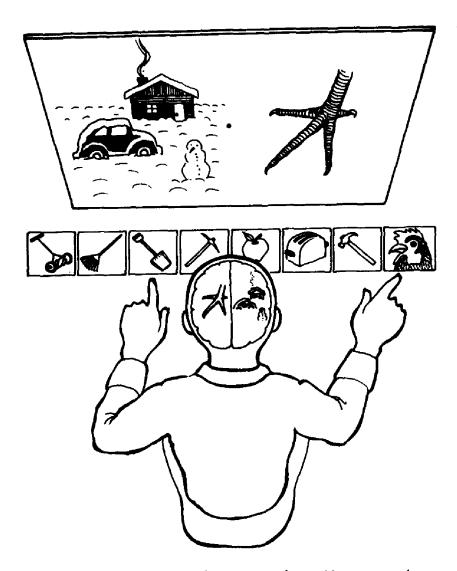


FIGURA 5.2. Se presentan simultáneamente dos problemas, uno al cerebro izquierdo, el del habla, y otro al cerebro derecho. Las soluciones a cada problema están a la vista del paciente.

Fuente: Reproducido con permiso de Michael S. Gazzaniga y J. LeDoux, *The Integrated Mind* (N. York: Plenum, 1978).

la pala, cuando el único dibujo que había visto era el de la pata. Debido a la separación entre los hemisferios, el cerebro izquierdo no tenía conocimiento de lo que había visto el cerebro derecho. Sin embargo, el cuerpo del propio paciente estaba haciendo algo. ¿Por qué lo hacía? ¿Por qué la mano izquierda señalaba la pala? El sistema cognitivo del cerebro izquierdo necesitaba una teoría, e instantáneamente creó una, que, dada la información que tenía sobre esa tarea concreta, tenía sentido. Es muy difícil describir la fascinación que produce observar estas cosas. Manipular variables mentales es una experiencia sobrecogedora.

Esta observación esencial se ha hecho cientos de veces en estos tres pacientes. En el caso de los dos pacientes que pueden responder a órdenes impresas presentadas exclusivamente al hemisferio derecho, es fácil reproducir el mismo tipo de condiciones experimentales. Se proyecta al hemisferio derecho, el que carece de la capacidad para hablar, una orden sencilla tal como «camina», y la respuesta del paciente consistirá normalmente en empujar la silla y disponerse a abandonar la zona donde se realizan las pruebas. Cuando se le pregunta dónde va, una respuesta habitual es «voy a mi casa a por una Coca Cola». Como antes, la tarea que afronta el hemisferio izquierdo consiste en explicar un comportamiento público que no ha sido iniciado por ese hemisferio sino por el cerebro derecho. Un fenómeno como éste, tan claramente observado en los pacientes cuyos cerebros derechos tienen capacidad lingüística, proporciona una pista fundamental para la comprensión de los mecanismos de la conciencia, es decir, del sistema de reglas que ayuda a las personas normales a dar sentido a su experiencia consciente.

Con tiempo, y teniendo en cuenta los cambios de actitud de cada paciente, el fenómeno que acabamos de describir, tan convincente y de tanta fuerza, puede adoptar muchas formas diferentes. Siempre está ahí, pero en oca-

siones hay que provocarlo de manera más sutil. Así, por ejemplo, con frecuencia se daban situaciones en las que J. W. podía adoptar temporalmente una actitud «filosófica» hacia lo que ocurría, y empezaba a decir de una manera más o menos reflexiva, sobre todo si se le hacían preguntas continuamente, que no sabía a qué se debían sus acciones. En tales estados mentales, J. W. podía responder al final de cada ensayo que no sabía por qué había señalado uno de los dos objetos, porque al fin y al cabo no sabía por qué hacía las cosas, etc.

Cuando estamos en presencia de un estado mental de este tipo, basta con que cambiemos la tarea para volver a provocar la función esencial de su cerebro izquierdo interpretativo. Se trata de hacer que su cerebro interpretativo se ocupe de una respuesta más sutil. Por ejemplo, proyectamos dos palabras a J. W., una de las cuales va a su cerebro derecho y la otra al izquierdo, el del habla, y le pedimos que haga un dibujo con su mano derecha de lo que ve. En uno de los casos, le presentamos la palabra «fuego» al cerebro derecho y «casa» al izquierdo. Nos sentamos y grabamos en vídeo su respuesta.

Lo primero que hizo J. W. fue dibujar una estructura parecida a una casa, lo cual estaba en consonancia con el estímulo presentado al cerebro izquierdo. Entonces empezó a dibujar líneas cruzadas para situar la casa en una localización determinada de una ciudad: la correspondiente a la estación de los bomberos. Cuando dejó su pluma, le preguntamos qué era lo que había dibujado. Asombrado, J. W. cogió su pluma, trazó algunas rayas más y dijo: «Una casita en un árbol», y agregó algunas rayas para que las líneas cruzadas se parecieran más a una casita de árbol*. Ensayo tras ensayo todo continuó de esa forma.

^{*} Típica estructura de madera construida en un árbol que se utiliza como juego para los niños. (N. del T.)

Lo que se desprende de aquí es que el ser humano normal se ve obligado a interpretar sus comportamientos y a construir una teoría para explicar por qué han ocu-rrido los mismos. La interpretación de la conducta sería un asunto insignificante si todos los comportamientos en los que tomásemos parte fueran producto de la acción verbal consciente. En tales casos, el origen del comportamiento se conoce antes de que ocurra la acción. Si todas nuestras acciones estuvieran constituidas únicamente por acontecimientos de este tipo, no habría nada que explicar. Yo sostengo que la persona normal no posee un mecanismo consciente unitario a partir del cual el sistema consciente tenga conocimiento de los orígenes de todas sus acciones. El argumento que pretendo defender es que el cerebro normal está organizado en módulos y que la mayor parte de los mismos son capaces de producir acciones, estados de ánimo y respuestas. Todos estos módulos, excepto uno, funcionan de modo no verbal, de tal forma que sólo pueden expresarse mediante comportamientos públicos o acciones más encubiertas. Para sostener un argumento como este son necesarios más datos, así que permitanme que continúe.

Dispusimos el laboratorio para realizar otros experimentos sobre cómo interpreta el cerebro izquierdo las respuestas del cerebro derecho. En este caso, el cerebro derecho no tenía que dar una respuesta efectiva, es decir, no tenía que realizar un movimiento corporal. En lugar de ello, se presentaba al cerebro derecho una lista de palabras conocidas que sabíamos que formaban parte de la vida del sujeto. En la primera parte del estudio, el cerebro derecho tiene que juzgar el valor de cada palabra con una escala de simpatía de 7 puntos. En esta fase previa de la prueba, el cerebro derecho tiene que responder señalando una de las siete tarjetas que contienen las 7 opciones de respuesta. Rápidamente se puso de manifiesto que al ce-

rebro derecho le gustaban algunas palabras y le desagradaban otras.

En la siguiente fase del experimento, llevada de nuevo a cabo por LeDoux y por mí mismo, no se permitía que el sujeto diese una respuesta manual⁵. En su lugar, ahora se exigía una respuesta verbal, y era el cerebro izquierdo el encargado de darla; éste tenía que expresar claramente su propia valoración de cada palabra en función de la escala de 7 puntos, después de que se proyectase cada palabra al cerebro derecho. En esta situación el cerebro izquierdo no conoce realmente cuál es la palabra que se ha presentado. El cerebro izquierdo hace una conjetura, respondiendo a algún sentimiento generado por el cerebro derecho y comunicado al izquierdo posiblemente a través de las vías cerebrales que aún quedan intactas entre los dos hemisferios. La evaluación que realizó el cerebro izquierdo de las palabras presentadas al derecho era casi idéntica a la que había hecho el cerebro derecho directamente.

Estos experimentos demuestran que un sistema mental independiente, en este caso el hemisferio derecho, puede reaccionar emocionalmente a un estímulo. El cerebro derecho adjudica una valencia, o un valor, a un estímulo, valor que puede ser comunicado, tanto si es positivo como negativo, al sistema verbal del hemisferio izquierdo. Sin embargo, el hemisferio izquierdo no puede decir qué estímulo es el que ha desencadenado la respuesta emocional concreta que está analizando (figura 5.3).

Cuando Jeff Holtzman se incorporó a mi laboratorio, trajo consigo un complicado aparato de rastreo ocular diseñado por Tom Cornsweet en el Instituto de Investigación de Stanford. Se trata de una máquina complicadísima cuyo manejo requiere un ordenador y cientos de miles de dólares en programas. Leon Festinger, el tutor de Holtz-

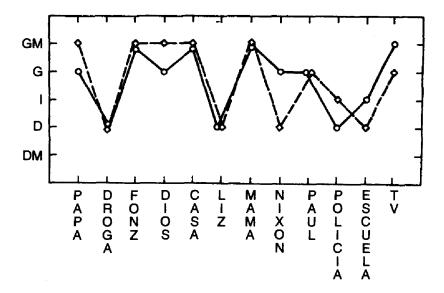


FIGURA 5.3. Clasificación verbal realizada por el cerebro izquierdo de estímulos expuestos a los hemisferios izquierdo y derecho. Los cuadrados unidos por líneas punteadas representan la exposición de estímulos al cerebro derecho, y los círculos unidos por líneas continuas, la exposición al cerebro izquierdo. Sólo en un caso («Nixon») la diferencia en la clasificación es superior a un punto.

GM: Gusta mucho

D: Disgusta

G: Gusta

DM: Disgusta mucho

I:Indiferente

Fuente: Reproducido con permiso de Michael S. Gazzaniga y J. LeDoux, The Integrated Mind (N. York: Plenum, 1978).

man, había cambiado su esfera de intereses y ya no necesitaba el aparato, así que Holtzman se lo trajo. La máquina no hubiera servido de nada sin Holtzman y los 6 operadores de ordenadores que Holtzman conoció en Nueva York, que eran los que sabían manejarla. En sus manos funcionaba perfectamente, y nos permitió realizar muchos experimentos nuevos, no sólo en pacientes con el cerebro dividido, sino también en pacientes con otros problemas neurológicos.

La máquina mide con precisión el movimiento de los ojos. Si el sujeto sentado a la máquina mueve sus ojos aunque sólo sea un ápice, el ordenador cierra un obturador electrónico, el cual detiene a su vez una película que se está proyectando a cualquiera de los dos hemisferios. En otras palabras, la máquina nos permite presentar sin interrupción una historia visual a un hemisferio o al otro, dándonos tiempo para provocar un estado de ánimo.

Al realizar las pruebas con la paciente V. P., la cual tiene los ojos más apropiados para la lectura de la máquina, pudimos proyectarle, durante un minuto o dos cada vez, fragmentos de películas que ocasionaban reacciones emocionales⁶. En la primera prueba, le proyectamos una tira de película procedente de la Cornell Office of Health and Safety (Oficina de Salud y Seguridad de Cornell), en la cual se aconseja a los empleados que, en una hipotética situación de incendio, no arrojen a sus compañeros de trabajo al fuego. Este apunte dramático, llegado hasta nosotros debido a alguna norma gubernamental, es ciertamente aterrador. Gracias al rastreador ocular, V. P. vio la película únicamente con su hemisferio derecho, el que carece del lenguaje. La conversación que transcurrió entre V. P. y yo, el examinador, tuvo lugar en los siguientes términos:

- M. S. G.: ¿Qué has visto?
- V. P.: La verdad es que no sé lo que he visto. Creo que nada más que un destello blanco.
 - M. S. G.: ¿Había gente?
- V. P.: No creo. Quizás algunos árboles, árboles rojos como en otoño.
 - M. S. G.: ¿Te produjo alguna emoción?
- V. P.: No sé por qué, pero estoy como asustada. Me siento nerviosa. Quizás no me agrade esta habitación, o quizás eres tú. Me pones nerviosa.

V. P. se volvió hacia uno de los ayudantes y dijo: «Sé que me agrada el doctor Gazzaniga, pero ahora mismo me infunde miedo, no sé por qué razón.»

Cuando se proyectó una película más serena, como por ejemplo una panorámica del océano que hay frente a mi casa, en Santa Bárbara, V. P. dijo que pensaba que la película era «agradable y tranquila». Una vez más, el cerebro izquierdo interpretaba correctamente el estado de ánimo global producido por el cerebro derecho. Hay que hacer notar que cualquier extremo de la escala afectiva podía apreciarse de ese modo. Desde la angustia a la tranquilidad, el cerebro izquierdo apreciaba el estado emocional del cerebro derecho. El fenómeno es tan espectacular como parece. Pasemos revista a la situación.

El paciente con el cerebro dividido nos permite realizar experimentos concretos para estudiar cómo interactúan dos sistemas mentales independientes, lo cual resulta una ventaja para la investigación, pero esta situación no debe confundirse con el funcionamiento del cerebro normal. En condiciones normales, las dos mitades del cerebro están conectadas, y el fenómeno que he descrito da cuenta sólo de un caso particular. Pero yo sostengo que este caso particular nos da una idea mucho más general sobre la organización normal del cerebro. Según mi interpretación, el cerebro normal está organizado en cientos, o quizás incluso miles, de sistemas modulares de procesamiento que, por lo general, únicamente pueden expresarse mediante la acción efectiva, y no por medio de la comunicación verbal. La mayor parte de estos sistemas, al igual que los que poseen los animales, pueden recordar acontecimientos, almacenar reacciones afectivas a los mismos y responder a estímulos asociados con un tipo determinado de recuerdo. Todas estas actividades las llevan a cabo rutinariamente los gatos, los perros, los monos y también los humanos. Se trata de actividades que tienen

lugar sin la intervención del lenguaje y sin conciencia. Son los elementos sobre los que se apoya un sistema mental en funcionamiento para disfrutar de una vida mental completa. Veamos un ejemplo tomado de la vida cotidiana que se ajusta a mi argumentación.

Es la tarde de un lunes y estás en casa. No hay nada raro, todo marcha bien. Charlas con los amigos, todo el mundo está de buen humor y las cosas te salen bien. Pero el martes, al despertarte, tu estado de ánimo se ha ensombrecido sin razón aparente, y te preguntas qué ha pasado. Los datos sobre la suerte de tu vida no han sufrido alteración en las últimas 12 horas. ¿A qué se debe el cambio?

En mi opinión, se ha activado de alguna forma un módulo no verbal, y las asociaciones emocionales de los acontecimientos almacenados en ese módulo se han comunicado al sistema emocional del cerebro. Tenemos tendencia a olvidar que la capacidad del cerebro de los vertebrados para aprender fácilmente respuestas asociativas condicionadas es una función cerebral activa, una función que los humanos tenemos en común con los vertebrados infrahumanos que carecen del lenguaje, como puede ser el caso de nuestro perro. Los humanos nos vemos constantemente condicionados a producir determinadas respuestas emocionales, y los módulos concretos del cerebro que almacenan esta información emocional pueden activarse para responder por muchos medios distintos.

En el caso concreto que acabamos de ver de la tristeza del martes por la mañana, se experimenta un estado de ánimo negativo. Si el proceso se detuviera en ese punto, la vida sería bastante más sencilla. Pero, en mi opinión, lo que sucede es que, debido a que hay que interpretar este nuevo estado de ánimo, tenemos tendencia a interpretar de manera más negativa los acontecimientos que anterior-

mente eran neutrales y negativos, y también incluso los que eran positivos. ¡Caramba, la persona que durmiese a nuestro lado podría estar expuesta a llevarse una buena sorpresa!

Este ejemplo se refiere a las sutiles manipulaciones del estado de ánimo que pueden ocurrir y al modo en que pueden interactuar para cambiar nuestras creencias sobre las cosas, las personas y los acontecimientos. Mi idea, sin embargo, incluye también los comportamientos externos. Se trata de un fenómeno que se repite constantemente. Piénsese en el hombre felizmente casado que cree en la fidelidad. Llegan las fiestas navideñas y, después de una buena juerga, termina en la cama con Suzy. Se ve involucrado en un comportamiento que está en contradicción con sus creencias sobre la institución social de la que se ha comprometido a formar parte. ¿Qué sucede? ¿Cómo se explicaría este hombre su comportamiento?

Lo que sucedería, naturalmente, es que el hombre casado en cuestión cambiaría su valoración de la importancia de la fidelidad para el matrimonio, y lo haría mediante un poderoso mecanismo psicológico que ha sido brillantemente descrito por Leon Festinger⁸. Puesto que las personas no pueden vivir en un estado mental de disonancia entre sus creencias y su comportamiento real, una de las dos partes tiene que ceder, y normalmente es la creencia en cuestión la que cambia. Esta es la esencia de la teoría de la disonancia cognitiva de Festinger. La nueva ciencia del cerebro aporta a esta interpreta-

La nueva ciencia del cerebro aporta a esta interpretación el conocimiento que tiene sobre la organización del cerebro, el hecho de que, efectivamente, se encuentra organizado en módulos relativamente independientes capaces de iniciar comportamientos dispares. De las consecuencias de este modelo de la mente nos ocuparemos en breve. De momento permítaseme resumir lo fundamental

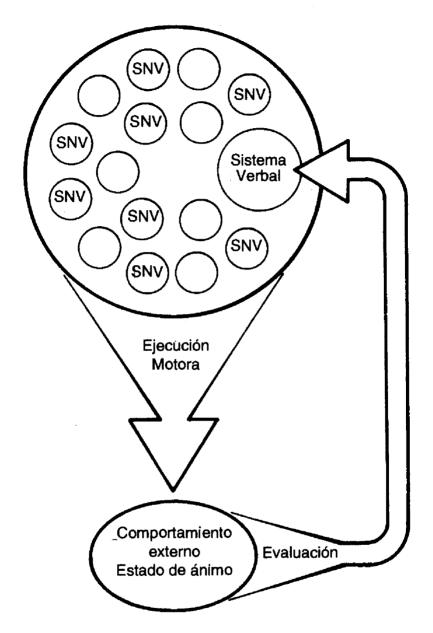


FIGURA 5.4. Las observaciones sobre pacientes con el cerebro dividido llevan a la conclusión de que el cerebro está organizado de forma modular y que cada uno de los módulos puede producir comportamientos independientes. Una vez que se producen los comportamientos, el sistema del hemisferio izquierdo, basado en el lenguaje, los interpreta y construye una teoría sobre el significado de los mismos (SNV = Sistema No verbal).

(véase la figura 5.4). El hemisferio dominante, normalmente el izquierdo, está comprometido en la tarea de interpretar nuestros comportamientos externos, así como las respuestas emocionales más encubiertas producidas por los módulos mentales independientes. El cerebro izquierdo construye teorías para explicar por qué han ocurrido estos comportamientos, y lo hace así debido a la necesidad que tiene el sistema cerebral de hacer coherente la totalidad de nuestros comportamientos. Se trata de una empresa característicamente humana, y sobre la misma descansa no sólo el mecanismo que genera nuestro sentido de la realidad subjetiva, sino también la capacidad mental que nos libera de los controles que nos atan a las contingencias externas. Creo que este hecho es de fundamental importancia y en el próximo capítulo describiré datos que lo confirman.

Dos mil años de cultura occidental han hecho arraigar la idea de que nuestras acciones son producto de un sistema consciente unitario. Esta suposición refleja una parte sustantiva de la opinión general, y en torno a ella han surgido diversas creencias y se han formado muchas instituciones científicas. Cambiar de modo efectivo esta opinión lleva tiempo, supone un gran esfuerzo y siempre requiere datos que sirvan de apoyo. Permítaseme volver a la clínica neurológica, en esta ocasión para ocuparme de pacientes, problemas y pruebas de otro tipo. Mi objetivo es llamar la atención sobre otros datos experimentales que convergen con los que hemos descrito hasta ahora y que abogan en favor de una perspectiva modular de la mente.

En neurología, hay un procedimiento denominado «angiografía» que consiste en examinar al paciente con rayos X después de haberle inyectado un tinte opaco en los vasos cerebrales. El resultado es una imagen del flujo

sanguíneo normal o anormal del cerebro. Se trata de un procedimiento extremadamente útil y especialmente provechoso para el neurocirujano.

Un procedimiento similar, denominado «prueba de Wada», inventado hace muchos años por el neurocirujano canadiense Juin Wada, consiste en inyectar un anestésico de efecto limitado en las arterias cerebrales1. Debido al modo como están organizados los vasos cerebrales, la droga se suministra solamente a un hemisferio (esta breve descripción general es suficiente para nuestro propósito actual, aunque habría muchísimas puntualizaciones que hacer). La técnica permite que un hemisferio permanezca temporalmente en estado de sueño mientras el otro permanece despierto. Fue ideada por los neurocirujanos para comprobar si el hemisferio que debía ser dominante en el lenguaje lo era realmente. La prueba hace que el hemisferio izquierdo, que suele ser el dominante a este respecto, no pueda comprender órdenes habladas ni producir lenguaje. Cuando la droga se inyecta en el hemisferio no do-minante, los procesos lingüísticos no resultan afectados. A veces hay sorpresas, por lo que es importante estar absolutamente seguro de cuál es el hemisferio dominante del lenguaje en el caso de que se contemple la posibilidad de practicar una operación quirúrgica de importancia.

Sería injusto no transmitir al lector la emoción que conllevan muchos de los procedimientos de investigación de los que surgen las observaciones que se van a presentar aquí. Una de las situaciones más estremecedoras en que me he visto involucrado tuvo lugar en la consulta médica de un neurocirujano mientras administrábamos la prueba de Wada. Merece la pena describirla.

El paciente, que es normal salvo por algún tipo de lesión cerebral adquirida —un tumor cerebral, un aneurisma (una delgada pared arterial que corre peligro de romperse) o una malformación en forma de V (una red

de vasos de extraña patología situada en la confluencia donde la sangre arterial oxigenada se transforma poco a poco en sangre venosa desoxigenada)—, yace tendido completamente consciente en una mesa mecánica. La mesa se controla electrónicamente, de tal forma que se pueda desplazar al paciente horizontalmente bajo la máquina de rayos X para tomar fotografías de su cuerpo y de su cabeza. En la sala de operaciones, los doctores que lo atienden visten delantales especiales para evitar la exposición excesiva a las radiaciones, sobre todo en sus testículos.

Anteriormente se colocaba una aguja directamente en la arteria carótida, la cual pasa por la parte lateral del cuello. La carótida izquierda transporta el flujo principal de sangre al hemisferio izquierdo y la carótida derecha al hemisferio derecho. Este método dejó de practicarse cuando se observó que, en algunos casos, la aguja hacía desprenderse una sustancia (llamada «placa») de la pared arterial que pasaba rápidamente al cerebro y ocasionaba un bloqueo o un infarto seguido de la consiguiente apoplejía. Actualmente, se introduce un catéter en una arteria de la pierna; desde aquí se le hace llegar a la arteria carótida de un lado del cerebro, pasando por el tronco y por el cuello. De esta manera, si la introducción de la aguja en la arteria hace que se desprenda una placa, el bloqueo afecta a la arteria de la pierna, algo mucho más tolerable que un bloqueo en una arteria cerebral.

El neurorradiólogo inserta el catéter y controla su recorrido hasta que alcanza el cerebro, guiándolo a través de las arterias y evitando los rodeos y los conductos sin salida. El paciente observa el recorrido del catéter en el mismo monitor de televisión que usa el doctor. Es un acontecimiento electrizante.

Finalmente, cuando el catéter está en su sitio es cuando todo está dispuesto para administrar la prueba de Wada. Las manos del paciente se mantienen suspendidas en el aire. Cuando la droga hace efecto, la mano contraria al hemisferio anestesiado cae y permanece en un estado de parálisis transitoria. El otro hemisferio está despierto, al igual que el aparato motor de la parte del cuerpo contraria al mismo. El escenario está preparado para que el psicólogo, apoyándose una vez más en un procedimiento médico, aborde cuestiones sobre la organización del cerebro.

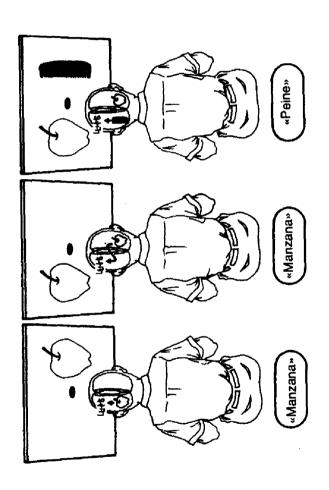
Considérese el caso de un paciente que no sea afásico pero que tenga dormido su hemisferio izquierdo durante dos o tres minutos. El neurorradiólogo inyecta la droga en la arteria carótida izquierda; después de unos 25 segundos su mano derecha queda paralizada y el cerebro izquierdo ya no comprende el lenguaje. En la sala hay mucha tensión porque este procedimiento supone manipular la conciencia humana. La mano izquierda puede moverse y tiene sensibilidad, ya que el cerebro derecho se mantiene despierto. Coloco un objeto (una cuchara) en la mano sensible de la persona sin habla, le pido que lo recuerde y lo retiro después de unos 30 segundos.

Pasados unos minutos, el efecto de la droga comienza a diluirse y el paciente recobra gradualmente la conciencia. Le pregunto: «¿Cómo te sientes?», a lo que normalmente contesta diciéndome que «muy bien», ya que, además de otros efectos, la droga produce un estado de «euforia» muy notable. Entonces le digo al paciente: «Mientras estaba dormido, coloqué algo en su mano izquierda. ¿Puede decirme lo que era?» El paciente se siente confundido y por lo general niega que se haya colocado nada en su mano izquierda. Estamos ante el sistema lingüístico del cerebro izquierdo, que trata de acceder a la información que existe en el cerebro, pero no lo consigue, pues está oculta en algún tipo de código o módulo mental que no reconoce los procesos cerebrales que representan el lenguaje natural. Yo insisto, «¿Está seguro de que no

recuerda nada sobre lo que le di hace unos minutos?». De nuevo el paciente niega saber nada del asunto.

Seguidamente, muestro al paciente un grupo de objetos, entre los que se encuentra el que puse en su mano izquierda unos minutos antes. Entonces el paciente señala con toda rapidez el objeto correcto y, casi igual que haría el hemisferio izquierdo de uno de nuestros pacientes con el cerebro dividido, se pone a teorizar sobre los movimientos iniciados por el cerebro derecho, y añade, «Sí, claro, era la cuchara».

¿Qué significa todo esto? En cierto modo, lo que hemos hecho ha sido introducir cierta información en el cerebro sin que se diese cuenta de ello el sistema lingüístico2. La información se codifica en uno de los muchos módulos mentales del cerebro que sirven para registrar la experiencia. Sin embargo, no se trata de un módulo que disponga de capacidad lingüística. De hecho, cuando los procesos lingüísticos vuelven a estar presentes, este módulo no comunica sus secretos al sistema lingüístico. Si esto se debe o no a que la información está en un código neural incomprensible para otro módulo, del mismo modo que un italiano tiene muchas dificultades para comprender a un griego, es algo que ignoro. Cualquiera que resulte ser el mecanismo final, este tipo de experiencia demuestra que la información almacenada de hecho en el cerebro puede estar en disposición de expresarse por sí misma mediante un movimiento pero no mediante el sistema lingüístico, para el cual resulta inaccesible. Este resultado da más peso a la teoría de los módulos mentales múltiples.


Permítanme presentar otro tipo de pruebas³. Los pacientes con una lesión de las regiones posteriores del hemisferio derecho no pueden ver la información presentada en su campo visual izquierdo si se presenta simultáneamente otra información en su campo visual de-

recho; se trata de un extraño descubrimiento clínico. Imaginemos, por ejemplo, que miramos directamente, frente a frente, a uno de tales pacientes. Si uno sostiene un peine en la mano izquierda y una manzana en la derecha, el paciente dirá que sólo ha visto el peine. Los pacientes «eliminan» la manzana (véase la figura 6.1).

La primera cuestión que cabe plantearse en esta situación es averiguar si el paciente está o no realmente ciego. Afecta la lesión cerebral al sistema visual hasta el punto de que la información no llegue al cerebro? La respuesta es negativa, ya que si en el campo visual que ha dado lugar a la eliminación se coloca un único objeto (el estímulo), el paciente es perfectamente capaz de dar cuenta del mismo. De ahí que la cuestión sea la siguiente: ¿Qué ocurre con esa información visual para que, en las condiciones de estimulación comportamental, el paciente no pueda describir verbalmente? ¿Puede utilizarse la información en los cómputos cerebrales aunque el sistema verbal no tenga acceso a la misma?

Probablemente la respuesta sea afirmativa. Si, en vez de pedirle al paciente que nombre los dos estímulos, le pedimos que nos diga meramente si los dos objetos son iguales o diferentes, el paciente puede hacerlo. Pero curiosamente, cuando los ensayos se realizan con estímulos diferentes, los pacientes, que afirman que los estímulos son diferentes, no pueden nombrar el estímulo presentado en el campo visual en donde se produce la eliminación. Lo que ocurre, en otras palabras, es lo siguiente: en uno de los módulos mentales tiene lugar un cómputo, y el producto de este cómputo se transfiere al sistema verbal. El sistema verbal puede valerse de esta respuesta, pero no puede decir qué información ha intervenido en el cómputo. Estamos ante una observación muy importante.

Una vez más, los datos indican que el cerebro está or-

pero sólo en uno de estos lados, pueden describirla exactamente de la misma forma que un sujeto normal. No obstante, si se colocan dos objetos delante de los pacientes, éstos «ignoran» la imagen del campo visual izquierdo y afirman que sólo FIGURA 6.1. Al examinar a pacientes con lesiones en el hemisferio derecho es frecuente observar el fenómeno que se conoce como «eliminación» o «extinción». Si la información se les presenta en cualquiera de los lados de la línea media visual, ven la información del campo visual derecho (L y H se refieren al lenguaje y al habla del hemisferio izquierdo)

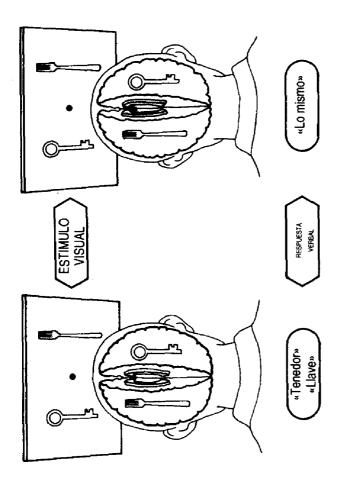
ganizado de tal forma que la información se almacena en módulos. Estos módulos pueden computar, recordar, sentir emociones y actuar, pero no necesitan mantenerse en relación con el lenguaje natural y con los sistemas cognitivos que subyacen a la experiencia consciente de cada persona. En un sentido más amplio, lo que consideramos como experiencias conscientes son, en gran medida, recuerdos que están asociados a las interpretaciones de nuestros comportamientos y que identificamos verbalmente.

La neurología clínica abunda en ejemplos que apuntan hacia la teoría modular. Una paciente que vimos el pasado año, a la que llamaré señora Smith, tenía una lesión en la zona parietal derecha. Las lesiones ubicadas en esta parte del cerebro pueden ocasionar una amplia variedad de alteraciones, entre las cuales está la que padecía la señora Smith: un trastorno de las funciones que sirven para determinar la localización espacial en la que uno se encuentra. Esta señora era paciente de Jerome Posner, doctor del hospital *Memorial Sloan-Kettering*, en la ciudad de Nueva York⁴. El doctor Posner nos llamó un día para decirnos que teníamos que verla y, debido a sus síntomas, grabamos en vídeo la sesión en la que aplicamos las pruebas.

La señora Smith estaba en el Memorial Hospital para someterse a una operación de cirugía cerebral. Aunque se trataba de una mujer inteligente, con gran encanto personal y muy ingeniosa, creía que se hallaba en Freeport, en el Estado de Maine. Estaba vestida con las ropas de hospital y sentada en su silla de ruedas, y durante el curso de una conversación acerca de los vericuetos de la historia de América, respondía a la cuestión, «A propósito, señora Smith, ¿dónde se encuentra usted?», diciendo: «Estoy en Freeport, Maine. ¿Y usted?». Cuando yo señalaba los ascensores y preguntaba, «¿qué es eso que hay allí?», ella

respondía, «esos son los ascensores. ¿Sabe lo que me costaría instalarlos en mi casa? Usted sabe que desde que vine para que me hicieran la operación cerebral, cada doctor que entra en mi habitación me pregunta dónde estoy, y siempre les digo que en Freeport, Maine. En cada ocasión me corrigen diciéndome que estoy en el hospital Memorial Sloan-Kettering de Nueva York. Finalmente, después de que ocurriese lo mismo durante una semana más o menos, el doctor Posner me aconsejó que contestase diciendo que estoy en Nueva York. Nunca se preocuparon de si yo lo creía o no».

Aquí estamos ante el caso de una mujer por lo demás inteligente que tiene un módulo que funciona mal debido a su problema cerebral. Ese módulo aporta algunos datos que son imprescindibles para ubicarse en el espacio. El mal funcionamiento del mismo le obligaba a explicar algunos aspectos extraños de la realidad relacionados con su localización en el espacio, algo que hacía sin apenas vacilar.


Hasta 1978, mis ideas generales sobre la existencia de módulos mentales habían evolucionado a partir de los resultados de los experimentos realizados con pacientes que tenían el cerebro dividido y otros grupos de pacientes clínicos, como el caso de la señora Smith. Pero ese año tuvo lugar un avance realmente increíble. Se produjo por primera vez en P. S., uno de los pacientes con el cerebro dividido. Su hemisferio derecho comenzó a hablar, con lo que se inició toda una nueva serie de observaciones.

Normalmente, un paciente con el cerebro dividido puede nombrar la información que se presenta en el campo visual derecho, pero no la que se le presenta en el izquierdo. Imaginen mi sorpresa y mi satisfacción cuando P. S. comenzó a nombrar información presentada en el campo visual izquierdo. P. S. era nuestro caso decisivo. Hacía solamente tres años que se le había operado⁵.

La primera cuestión que hay que plantearse consiste en averiguar si se trata realmente de que el cerebro derecho posea la capacidad de hablar o si la información presentada al mismo se transfiere de algún modo al cerebro izquierdo, que es el que tendría la capacidad de hablar. Examinemos la situación. Se presenta el dibujo de un cubierto al hemisferio izquierdo y el de una llave al derecho. Inmediatamente, P. S. dice: «cubierto y llave» (véase la figura 6.2). Pero si se le pregunta al paciente con el cerebro dividido, «¿son iguales o diferentes los dos dibujos que te voy a mostrar?», éste es incapaz de alcanzar un nivel de resolución de la tarea superior al esperable por azar. Esto se debe a que, si bien es cierto que la parte izquierda de la mente ve un cubierto y la derecha una llave, a efectos prácticos, sin embargo, no se comunican entre sí. Ocurre exactamente lo mismo que si se mostrara una llave a una persona A y un cubierto a otra persona B. A menos que hablen una con la otra, no hay manera de que una de ellas pueda averiguar por encima del nivel de azar si se trata o no del mismo objeto.

Cuando un paciente tiene la capacidad de hablar con ambos hemisferios, nuestra concepción de quién explica qué a quién se complica bastante. Afortunadamente, en esta relación entre dos cerebros parlantes, el hemisferio izquierdo todavía es el dominante, ya que la mayor parte del habla corre a su cargo. El cerebro derecho es proclive a descripciones escuetas, como puede verse por los resultados de otro experimento. Este estudio nos vuelve a mostrar que la construcción de teorías sobre los comportamientos producidos por el cerebro derecho es una característica propia del cerebro izquierdo. En este caso, se trata del comportamiento lingüístico producido por la mitad derecha del cerebro.

En este estudio, se le mostró a P. S. un serie de diapositivas que contenían dos palabras cada una (véase la fi-

el dibujo que se le presenta. No obstante, si en vez de pedirles que nombren los objetos, se les pide que juzguen si los dos FIGURA 6.2. Los pacientes que tienen la capacidad de hablar con cada uno de sus hemisferios, como es el caso de P. S. y V. P., nombran rápidamente series de estímulos como las presentadas en el dibujo, pues cada hemisferio puede describir objetos presentados son iguales o diferentes, los pacientes son incapaces de hacerlo, porque ninguno de los hemisferios sabe lo que vio el otro a menos que sea nombrado en voz alta.

gura 6.3)⁶. Leída normalmente de izquierda a derecha, la serie de diapositivas relata una historia con sentido (Historia 1. Mary + Ann, Puede + Venir, Visitar + A, El + Pueblo, Barco + Hoy). Por supuesto, P. S. no podía leer la historia de izquierda a derecha; cada hemisferio recibía una sola palabra en cada ensayo. El hemisferio izquierdo

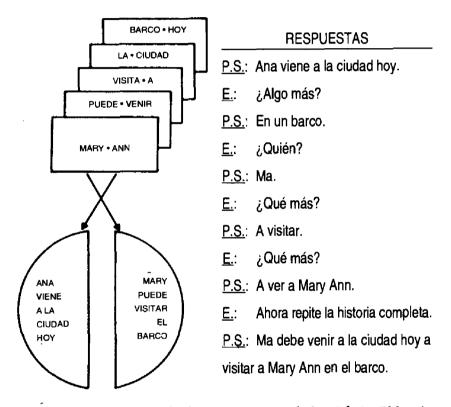


FIGURA 6.3. Se presentan dos historias, una a cada hemisferio. El hemisferio izquierdo cuenta inmediatamente su historia, y a continuación el hemisferio derecho cuenta la suya por partes y fraccionada. Una vez que el cerebro izquierdo escucha estos elementos semánticos, combina ambas historias y forma una nueva.

Fuente: Reimpreso de Michael S. Gazzaniga, «Right Hemisphere Language Following Brain Bisection: A 20-Year Perspective», American Psychologist, vol. 38, n° 5 (1983): 525-37. Copyright 1983 por la American Psychological Association. Reimpreso con permiso del autor y del editor.

leía solamente las palabras de la parte derecha de la pantalla, palabras que, según lo previsto, también relataban una historia (Historia 2. + Ann, + Venir, + A, + Pueblo, + Hoy); y el hemisferio derecho, las de la parte izquierda de la pantalla (Historia 3. Mary +, Puede +, Visitar +, El +, Barco +).

Después de presentar toda la serie de diapositivas, se le pidió a P. S. que recordase la historia. P. S. respondió inmediatamente, «Ann viene al pueblo hoy». Esta respuesta correspondía al hemisferio izquierdo y expresaba lo que había percibido el sujeto. Entonces se le preguntó a P.S. si esa era la historia completa. P. S. se detuvo un momento y exclamó: «En un barco ... a visitar ... a visitar a Ma.» Cuando se le pidió que repitiera la historia completa, contestó: «Ann vino hoy al pueblo a visitar a Ma en el barco.»

Una vez más observamos la integración de comportamientos dispares en un marco coherente. Con el desarrollo del acceso bilateral al lenguaje, los comportamientos producidos por el hemisferio derecho, que ahora son capaces de desencadenar la palabra hablada, se incorporan al flujo consciente del hemisferio izquierdo.

Cuando V. P. comenzó a hablar a partir del hemisferio derecho⁷, se llevó a cabo una prueba todavía más sencilla. Se presentaron dibujos de líneas que representaban distintas escenas tanto al hemisferio izquierdo como al derecho. Los dibujos eran más complicados que el simple dibujo de una manzana. En lugar de dibujos simples, se trataba, por ejemplo, de un corredor de vallas con una vestimenta peculiar dirigiéndose en una determinada dirección. Cuando uno de estos dibujos se presentaba al cerebro izquierdo, la descripción del mismo se realizaba con toda precisión. Cuando se presentaba al derecho, la descripción era diferente. Aunque la caracterización inicial era correcta —«atleta», por ejemplo— la descripción

complementaria se alejaba cada vez más del tema, hasta el punto de que la descripción podría haber sido la de un jugador de baloncesto en lugar de la de un corredor de vallas. En esta situación encontramos de nuevo a nuestro viejo amigo. La mitad izquierda del cerebro oye salir de su propia boca la palabra «atleta» e inventa un estímulo para explicar la respuesta del cerebro derecho. Se trata de un fenómeno extraordinario que se repite una y otra vez.

Los resultados de estas pruebas, aplicadas bajo estrictas condiciones de manipulación comportamental, nos llevan a formular interesantes hipótesis sobre los sujetos normales. Por comenzar con un ejemplo sencillo, todos podemos recordar haber dicho alguna palabra o haber hecho algún comentario alguna vez como consecuencia de una supuesta pérdida de autocontrol, y haber intentado a continuación superar el embarazo que nos causó. Normalmente, lo único que conseguimos con nuestras explicaciones es empeorar la situación. Estoy pensando en esas ocasiones en que nos sorprendemos a nosotros mismos por lo mal que nos sienta algo dicho en nuestra presencia. Controlar la emoción desencadenada se convierte frecuentemente en reto muy difícil.

Un caso más interesante es de carácter notoriamente especulativo pero está relacionado de forma más estrecha con los sutiles procesos de la cognición creativa, tan difíciles de analizar por lo general. Este caso tiene que ver, en concreto, con el proceso de escritura. En mi opinión, un escritor no suele ser completamente consciente de la importancia de una frase, un párrafo o una página. El proceso de escritura, que provoca imágenes mentales mediante el uso acertado de las palabras, demuestra lo diferentes que son los pensamientos de su forma escrita. ¿Dónde encontramos las palabras para captar y transmitir la peculiar cualidad de nuestras comunicaciones personales? ¿Por qué la versión escrita de nuestras ideas parece

diferente de lo que imaginamos que queríamos decir en un primer momento?

Hace unos años, estábamos George Miller y yo tomando una copa en el club de la Universidad de Rockefeller cuando se nos ocurrió que sería una buena idea discutir esta paradoja con usuarios profesionales del lenguaje, en lugar de discutirla con científicos profesionales, los cuales únicamente reflexionan sobre el mismo (Miller, por cierto, no sólo ha hecho profundas reflexiones sobre el lenguaje, sino que además sabe escribir bien).

Invitamos a un grupo de escritores de categoría
—William Buckley, Tom Wicker y Tom Wolfe— a una cena para discutir sobre este fenómeno lingüístico. También invitamos a John Updike, el cual nos escribió una nota diciendo que desgraciadamente no le era posible «estar en nuestra mesa». Primero Updike había escrito «estar en nuestra cena» y luego tachó la palabra «cena» y la sustituyó por la palabra preferida. Esto me gustó porque confirmaba mi idea de que la buena escritura es el producto de una continua corrección —una opinión que expresé en nuestra «mesa». Sin embargo, esa opinión no convenció al resto de los presentes. Tom Wolfe dijo que (a) se necesitan 20 años para aprender a escribir y que (b) él personalmente proyecta cada página en el ojo de su mente y raramente corrige algo. Fue una cena espléndida. Miller hizo derivar la conversación con estos escritores, todos ellos de una inmensa cultura, hacia los problemas de cómo enseñar habilidades lingüísticas a nuestros mejores estudiantes universitarios. Miller explica muy bien las cosas, ya que puede identificar y verbalizar un problema con increible habilidad, y no expresa sus opiniones hasta que no ha perfeccionado las ideas a su gusto.

Me voy a permitir proponer un modelo de los procesos cognitivos que acompañan a la escritura. Conforme se forman las frases, las palabras comienzan a provocar imá-

genes mentales, cada una de la cuales accede a imágenes relacionadas con ella que encierran diferentes valencias emocionales. Este estado fluctuante de energía emocional lleva a la descripción de todas esas imágenes por medio del sistema verbal, que siempre está activo. La acción inicial se modifica así de forma dinámica.

Se trata de una idea que merece la pena tener en cuenta porque, como voy a mostrar, el lenguaje no es un sistema que tenga poder por sí mismo. El lenguaje nos comunica los cómputos cognitivos de otros módulos mentales. El modelo precedente cobrará entidad en la medida en que yo sea capaz de establecer cuál es la conexión entre el lenguaje y los otros módulos mentales.

Uno de los principales desafíos para el investigador de la cognición humana estriba en determinar lo que el lenguaje, en cuanto tal, aporta a los procesos cognitivos. En un nivel elemental, es evidente que el conocimiento ex-preso de una palabra y su significado ayudan enormemente a la comprensión individual. Considérese la palabra «vanagloria». Para alguien que la escuche y no esté muy seguro de su significado, la palabra podría sonar como una incómoda agrupación fonética innecesaria en nuestra lengua. Todos sabemos lo que significa «vano» y lo que significa «gloria», y podemos imaginar lo que podría significar la unión de ambas palabras. Con todo, cuando oímos la definición, «orgullo excesivo u ostentoso, especialmente cuando se basa en el propio éxito», la palabra se convierte en el reflejo exacto de un pensamiento. Es un reflejo tan preciso que se concluye inme-diatamente que hay algo en las palabras y sus definiciones que de verdad facilita la cognición. Yo sostengo que esto no es cierto.

Tradicionalmente, los psicólogos han intentado comprender la relación entre el lenguaje y la cognición mediante el estudio de niños que se encuentran en dife-

rentes etapas de su desarrollo durante las cuales ambos procesos se hallan desconectados de distintas formas⁸. Las publicaciones sobre este tema son confusas debido a que el sistema cognitivo y el sistema lingüístico pueden desarrollarse conjuntamente, haciendo muy difícil la interpretación de las disociaciones con las que uno se encuentra.

Otro método frecuentemente empleado para investigar la conexión entre el lenguaje y los procesos cognitivos consiste en el estudio de la capacidad cognitiva y lingüística del chimpancé. David Premack ha llevado a cabo ingeniosos estudios sobre este animal. La razón que justifica su enfoque es simple y aparentemente plausible: para conocer lo que pertenece en exclusiva a la especie humana, hay que determinar las capacidades de su ancestro más cercano. Intentemos imaginar cómo el entrenamiento lingüístico podría ayudarle a resolver problemas que de otro modo le resultarían irresolubles. Cuando el estudio termine, sabremos cuáles son las características mentales que únicamente posee nuestra especie.

El problema que siempre le he visto a este enfoque estriba en que considera similares acciones realizadas por el hombre y por las bestias que puede que en realidad no lo sean. Un marciano podría pensar que, cuando mi perro sale corriendo a las seis de la mañana hacia una tienda de la First Avenue a por un plato de leche y cuando yo salgo mucho más tarde a comprar mi botella de leche, estamos haciendo lo mismo, que nos mueve el mismo impulso, y que los sistemas cerebrales en función de los que actuamos son los mismos. Nada podría estar más lejos de la realidad.

El problema de establecer un vocabulario común aplicable a los estudios sobre los humanos es extremadamente difícil. Es el mismo problema que se plantea en una discusión política con un soviético, ya que el uso que él haría de las palabras «libertad», «democracia» y otras semejantes tiene un significado completamente diferente del que le otorgan los occidentales.

Una vez que identificamos nuestro objeto de estudio —la naturaleza biológica y psicológica de nuestra especie, Homo sapiens sapiens—, lo que debemos hacer es centrarnos en él: Homo sapiens sapiens es la especie que debemos estudiar. El trayecto biosférico que conduce al hombre moderno, al Homo sapiens sapiens, es de gran interés, y a su conocimiento han contribuido estudios de todos los tipos y sobre los más variados temas, desde la genética celular hasta la capacidad de los animales para formar lazos afectivos; pero, repito, para comprender a los humanos hay que estudiar a los humanos.

Otro enfoque es el que han empleado los neurocientíficos cognitivos, cuyo objeto de estudio suele ser un paciente afásico. Como he dicho anteriormente, por lo general el paciente afásico ha sufrido un accidente cerebrovascular en la mitad izquierda del cerebro, que le ha causado un trastorno del lenguaje. Cuando la comprensión del lenguaje está dañada, también la cognición se ve afectada. Cuanto mayor sea el trastorno que afecta a la comprensión del lenguaje, mayor será el daño cognitivo. Estos datos suelen interpretarse en el sentido de que el lenguaje y la cognición son fenómenos estrechamente vinculados.

Quise poner a prueba esta idea estudiando a nuestros tres pacientes con el cerebro dividido. Recordemos que el cerebro derecho carece normalmente de la capacidad lingüística. Aunque las razones sean poco claras, nuestros tres pacientes sí poseían esta capacidad en su hemisferio derecho, y, puesto que los dos hemisferios se encontraban desconectados, estábamos en condiciones de estudiar lo que aporta el lenguaje a un sistema neural que normalmente no lo posee. ¿Permite el lenguaje que el hemisferio

derecho haga todas las cosas que puede hacer el hemisferio izquierdo? Bueno, no es ésta la manera más acertada de plantear la cuestión. Lo que nos gustaría saber es si la cognición alcanza el mismo nivel que en el cerebro izquierdo en un cerebro derecho con una capacidad lingüística semejante a la del izquierdo. Y no es así.

Hagamos un breve resumen de las notables capacidades lingüísticas que poseen estos tres pacientes. Los tres poseen un amplio léxico, sin que existan diferencias significativas a este respecto entre el cerebro derecho y el izquierdo. Además, dos de estos pacientes pueden realizar ciertos tipos de procesamiento sintáctico con el hemisferio derecho, y otros dos pueden hablar además de comprender el lenguaje con dicho hemisferio.

Este apresurado resumen no nos dice nada de las cautivadoras dimensiones de unas personas tan especiales como éstas. Permítaseme poner un sugerente ejemplo relativo a J. W. Este paciente comprende tanto el lenguaje escrito como el hablado con el hemisferio derecho, pero dicho hemisferio todavía carece de la capacidad de hablar. Proyecto una palabra sobre su cerebro derecho y, con el fin de saber si entiende la palabra y los distintos significados de la misma, le pido sencillamente que «haga un dibujo con su mano izquierda que represente la palabra que he proyectado». Al comienzo de cada uno de los ensayos, J. W. suele protestar diciendo que mi petición no tiene ningún sentido porque él (su cerebro izquierdo) no ha visto nada (lo que es verdad), por lo que difícilmente se le puede pedir que dibuje algo. Yo intento animarle diciéndole algo así como, «vamos, Joe, sigue adelante y deja que tu mano izquierda lo intente». La mano izquierda cogía el lápiz y hacía correctamente un dibujo que representaba la palabra proyectada (véase la figura 6.4). J. W. hace este tipo de tarea rutinariamente.

Es curioso observar cómo, cuando se le presenta una

FIGURA 6.4. Se proyecta la palabra «bicicleta» al cerebro derecho, incapaz de hablar, del paciente J. W. Aunque J. W. dice que no ve nada, su mano izquierda es capaz de dibujar la bicicleta.

palabra o una imagen únicamente al cerebro derecho y la mano izquierda hace el dibujo correspondiente, J. W. suele decir: «No sé por qué he dibujado eso. ¿Qué es? Parece un pájaro. Supongo que vi un pájaro.» Se trata de una situación en la que el cerebro izquierdo no ha visto nada. El cerebro izquierdo no ha visto estímulo alguno y la interpretación que hace de la acción del derecho es más indirecta y menos espectacular que la que tiene lugar en las situaciones, descritas al comienzo del capítulo, en las cuales la información se presenta en los dos campos visuales. Con todo, el fenómeno sigue estando ahí.

Para demostrar más plenamente la capacidad lingüística del cerebro derecho, supongamos que, en lugar de pedirle a J. W. que haga un dibujo que represente la palabra que ha visto, le digo: «Joe, no hagas un dibujo de la palabra. Haz un dibujo de lo que se suele poner encima.» Si proyecto la palabra «caballo», J. W. coge el lápiz y dibuja no un caballo, sino una figura preciosa, pero abstracta, de una silla de montar. Entonces le digo, «haz un dibujo que corresponda a la palabra que viste», y aparece la figura de un caballo. En ese momento, Joe dice: «Bueno, supongo que esta es una silla de montar» (véase la figura 6.5).

Sabemos, por otras pruebas, que J. W. no es capaz de comprender sutilezas sintácticas con su cerebro derecho. Pero tiene el suficiente conocimiento lingüístico pragmático como para poder atender a mis instrucciones y seguirlas. Si uno se limitase a observar cómo respondía el cerebro derecho de J. W. a mis instrucciones verbales, llegaría a la conclusión de que se trataba de un cerebro plenamente consciente en el sentido que tiene esta palabra aplicada a los humanos. Sin embargo, esta mitad cerebral, con todas las cualidades lingüísticas descritas, no puede hacer una simple inferencia.

Si proyecto las palabras «alfiler» y «dedo» al cerebro

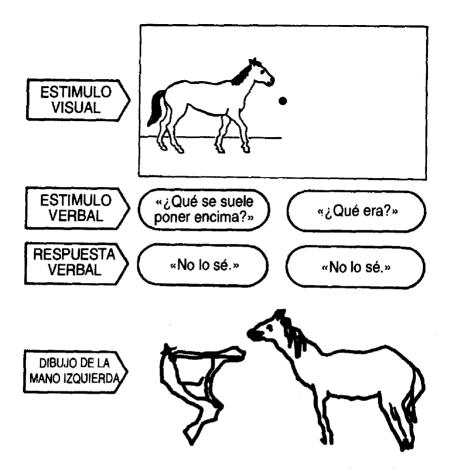


FIGURA 6.5. En este ejemplo de comprensión por parte del hemisferio derecho, se le pide a J. W. que dibuje no lo que ha visto, sino «lo que se suele poner encima» de lo que ha visto. J. W. dibujó una silla de montar inglesa. Posteriormente se le pidió que dibujara lo que había visto.

derecho, y la tarea de J. W. consiste en combinar las palabras para formar un nuevo significado o hacer una inferencia sencilla acerca de las mismas, el cerebro derecho fracasa estrepitosamente. La tarea es sencilla porque la respuesta, en este caso la palabra «sangrar», la tiene el paciente delante junto con otras opciones posibles. J. W. responde al azar con su cerebro derecho. Para el cerebro izquierdo la tarea resulta trivial, por supuesto. Lo que to-

davía es más sorprendente es el hecho de que, si se provecta la palabra «sangrar», el cerebro derecho puede definirla. Existen otras limitaciones tan importantes como las descritas. El cerebro derecho no puede realizar operaciones matemáticas sencillas, ni puede resolver problemas geométricos de segundo grado. ¿Qué podemos concluir a partir de estos datos? Podemos empezar por observar que la existencia de un sistema lingüístico muy desarrollado no garantiza necesariamente la presencia de capacidades cognitivas igualmente desarrolladas. El lenguaje, en cuanto tal, aporta poco a la cognición. Hay otros sistemas que se combinan con el lenguaje y que llevan a cabo los cómputos y la toma de decisiones importantes. El lenguaje se limita a «comunicar» los resultados de estos procesos, los cuales existen en el hemisferio izquierdo junto con la capacidad lingüística, pero parecen faltar en él derecho.

En el hemisferio izquierdo de los humanos (diestros), existen unos singulares sistemas neuronales que obligan al sistema cerebral que se comunica con el mundo exterior a dar sentido a los distintos comportamientos que los humanos llevamos a cabo. El desarrollo de las «creencias» que tienen las personas sobre la naturaleza del yo está inherente en este proceso, y las creencias adquieren tantas más dimensiones cuanto más diversos sean los módulos implicados en sus comportamientos. Las creencias tienen una importancia fundamental para la persona y, como tales, pueden llevar a superar a las fuerzas que actúan sobre la misma producidas por las recompensas y los castigos a que se ve sometido su comportamiento.

En mi opinión la presencia de creencias en nuestra especie se debe al modo como está organizado el cerebro humano. Con la aparición de sistemas como los del hemisferio izquierdo, que permiten hacer inferencias, capacidad que libera a los humanos del interminable aburrimiento de tener que avanzar por ensayo y error, el sistema se vio comprometido de forma ineludible a la construcción de creencias humanas. Un sistema cerebral que pueda hacer inferencias sobre los acontecimientos del mundo real también las hará, por definición, sobre sus propios comportamientos. Una vez que las creencias entran en escena, el organismo deja de vivir únicamente en el presente. El sistema de respuestas condicionadas que había gobernado desde siempre a las criaturas biológicas pasa ahora a formar parte de un sistema cerebral capaz de controlar su poder.

Capítulo 7 Modularidad y memoria

Una tarea singularmente importante del proceso científico consiste en examinar y reexaminar todos y cada uno de los experimentos realizados, así como buscar constantemente otros procedimientos experimentales para tratar de confirmar o rechazar las hipótesis. La propuesta de que el cerebro está organizado de forma modular conlleva ciertas predicciones que pueden ponerse a prueba en diversos grupos de pacientes. La principal predicción es que tendrán que observarse disociaciones extrañas y sorprendentes en distintos comportamientos. En ninguna otra parte resulta más evidente este fenómeno que en el estudio de la amnesia.

La amnesia no sólo es el tema en el que se inspiran numerosas novelas de suspense. Es un estado clínico que ha sido detenidamente estudiado durante décadas por muchísimos neuropsicólogos de talento. Una de las cuestiones intelectuales más fascinantes que pueden plantearse es la de cómo almacena la información el cerebro y mediante qué tipo de estructura lógica la recupera. ¿Cómo es posible, por ejemplo, que el cerebro pueda reconocer casi instantáneamente que «secleb» no es una palabra de nuestro idioma? Dependiendo del nivel de conocimiento de la lengua que alcance una persona, su vocabulario efectivo puede estar compuesto hasta por 250.000 palabras. «Secleb» podría ser una de ellas, ya que posee todos los elementos fonémicos y grafémicos característicos de una palabra; con todo, nos hemos dado cuenta de inmediato de que no era una palabra de nuestra lengua. ¿Por qué no ha sido necesario que el cerebro consultase su diccionario palabra por palabra antes de tomar una decisión? ¿Por qué un humano (un cerebro humano) trabaja más rápido cuanto más sabe, mientras que un artefacto (un ordenador) cuantos más conocimientos tiene más lento trabaja?

Estas y otras cuestiones igual de apasionantes han sido examinadas durante años por colegas especializados en psicología experimental trabajando con cerebros normales intactos. Antes de considerar los trabajos neuropsicológicos realizados con amnésicos, merece la pena señalar que gran parte de nuestra comprensión de los procesos de memoria procede de los estudios de cerebros normales efectuados por psicólogos experimentales. Ellos han sido los que realmente han explorado con minuciosidad los procesos de memoria y los que han hecho varias observaciones cruciales. Hay procesos, por ejemplo, que parecen tratar muy rápidamente la información nueva. Estos procesos controlan (y limitan) la cantidad de información que puede percibirse a partir de una única exposición breve del estímulo. Otros procesos, en fin, intervienen en el modo como se recupera un recuerdo de la memoria a largo plazo. Los psicólogos experimentales, que por regla general utilizan estudiantes universitarios como sujetos de experimentación, utilizan la táctica de forzar el funcionamiento del cerebro normal hasta que el

sistema falla y los sujetos cometen errores. Además, miden cuidadosamente el tiempo que tardan los sujetos en realizar ciertas tareas y, por medio de tales procedimientos, las pautas de errores y las diferencias de latencia resultantes permiten a los psicólogos construir teorías acerca del modo como funciona el sistema de memoria.

La primera vez que me interesé en la manera como el cerebro representa los recuerdos fue hace algunos años, cuando mi padre sufrió un ligero ataque en su hemisferio izquierdo que le dejó incapacitado de forma pasajera. En el plazo de 24 horas, mi padre pasó de ser un hombre enérgico y vital a estar muy próximo a la muerte. Se volvió completamente afásico, incapaz incluso de cumplir la más simple orden escrita o hablada. Este incidente fue de lo más penoso: sin duda las enfermedades que provocan incapacidad son las más difíciles de sobrellevar. Todos sus hijos fuimos a visitarlo y la familia permaneció en continua vigilancia las 24 horas del día.

Posteriormente, el proceso de incapacitación comenzó a remitir repentinamente por sí mismo. Mi padre empezó a moverse y a mostrar signos de que volvía a ser sensible. En el curso de unos días recuperó sus facultades, empezando por su delicioso sentido del humor. Resultó que el ataque había sido un infarto en una pequeña bifurcación arterial de una de las arterias posteriores del cerebro, cuyo efecto había sido más la inflamación del tejido colindante que una auténtica lesión. A medida que la inflamación remitió, el tejido y las redes neurales circundantes comenzaron a funcionar de nuevo.

Fue durante este período de recuperación cuando pude hacer una serie de observaciones que me hicieron reflexionar sobre lo que por aquel entonces denominaba el «aspecto multidimensional» de los recuerdos humanos. Las observaciones fueron como sigue. En un momento determinado de su recuperación, le pedí a mi padre que

me nombrara una serie de objetos que había en la habitación. Todo iba bien hasta que le mostré un clavel; mi padre me dijo que no sabía lo que era. Me dijo que era una flor, que era de color rosa y entonces la tomó de mis manos con una amplia sonrisa y la colocó en su solapa. Sin embargo, no podía nombrarla. Entonces le dije tres palabras, una de las cuales era «clavel», y le pedí que me indicara la que correspondía a la flor que él tenía. Mi padre fue incapaz de hacerlo. Por fin, le dije que se trataba de un clavel, a lo que él respondió: «Vale, si tú lo dices.»

Momentos después le pregunté si recordaba la planta que habíamos plantado el fin de semana anterior en su casa de Santa Bárbara. Me respondió: «Oh, sí, fue el domingo por la tarde, estaba Becky, y la plantamos al lado de la casa de Lewis, cerca del rincón sureste de la finca.» Yo le dije: «Exacto, ¿pero cómo se llamaba la planta?» No pudo averiguarlo, aun cuando era un fabuloso jardinero y se trataba de una gazania, una planta que le gustaba tanto estética como fonéticamente. Tampoco servía de ayuda que le nombrásemos la planta. Unas seis horas más tarde, todo quedó resuelto; mi padre se puso a nombrar todas las plantas que había en la habitación, citando incluso su género y especie.

Era evidente que su cerebro, en curso de recuperación, se encontraba en una fase especial durante la realización de las pruebas, lo cual dio como resultado lo que los psicólogos denominan una clara «disociación». Al mismo tiempo que era incapaz de nombrar una flor, podía recitar toda la información pertinente sobre la misma. Los circuitos y los módulos que procesan estos aspectos del estímulo estaban en funcionamiento, pero el módulo o circuito neural que almacenaba el nombre de la planta no funcionaba. No se trataba simplemente de que tuviese problemas para decir el nombre de las cosas, ya que podía nombrar otros objetos con facilidad; pero no reconocía

determinados objetos ni aunque se le nombrasen. Este tipo de observaciones no sólo abogan en favor de la modularidad, sino que sugieren que los módulos tienen un alto grado de especificidad. El tiempo, el espacio, el afecto y muchas otras dimensiones de un acontecimiento estimulante tienen que ser codificadas, y aparentemente lo son, en diferentes áreas cerebrales¹.

No obstante, estas observaciones no son sistemáticas y hay que completarlas mediante la experimentación directa. El examen clínico puede dar pistas, pero los verdaderos datos proceden de experimentos sistemáticos. Años después del ataque de mi padre, mi laboratorio empezó a participar en estudios sobre la amnesia en el contexto de las investigaciones realizadas en este campo, sobre el cual hay mucho que decir.

La investigación clínica moderna sobre la amnesia comenzó en torno a 1950 con el extraño caso de H. M.². Se trataba de un paciente del neurocirujano de Hartford William Scoville. Padecía ataques epilépticos incontrolados. En aquellos días se pensaba que la extirpación quirúrgica del hipocampo, estructura enclavada en ambos lóbulos temporales, podía aliviar esta angustiosa enfermedad. H. M. fue uno de los primeros y últimos pacientes a quienes se practicó esta operación. El efecto sobre su memoria fue devastador.

Fiel a la sintomatología de la amnesia, H. M. no podía recordar nada durante más de 10 minutos. Si se le contaba un chiste que le hacía reír, el mismo chiste le volvía a hacer gracia al repetírselo 15 minutos después. Si las personas que estaban a su lado se ausentaban durante más de 10 minutos, tenían que volver a presentarse al regresar, y esto ocurría aunque la persona en cuestión hubiera estado a su lado todo el día. Y, lo que es más importante, la serie exhaustiva de pruebas formales de memoria que realizó la doctora del Instituto Neurológico de Montreal, Brenda

Milner, confirmaron los aspectos cualitativos de su historia clínica y aportaron perfiles cuantitativos de su grave anormalidad.

De resultas de estos estudios, Milner y sus colegas mostraron la existencia de una apabullante realidad neurológica que era contraria a la concepción según la cual la memoria se forma en un proceso gradual, concepción esta que sostenían los psicólogos experimentales. En resumen, había un sistema de memoria a corto plazo que recibía información nueva, la trataba y, a continuación, la transfería a la memoria a largo plazo. La estructura cerebral más importante en esa transferencia es el hipocampo. Así, H. M. podía recordar acontecimientos pasados (tenía una buena memoria a largo plazo) e información nueva a corto plazo (10 minutos), pero no podía transferir la información del sistema a corto plazo al sistema a largo plazo. La investigación con este paciente se interpretó como demostración de que la lesión cerebral específica de una región concreta (el hipocampo) producía una amnesia anterógrada. Los acontecimientos que ocurrían después de la lesión no se codificaban en la memoria. De este modo, la lesión cerebral ocasionaba una disfunción en el sistema cerebral que se ocupa de fijar la información nueva. En conjunto, puede decirse que el trabajo de Milner sirvió para establecer el marco de referencia en que se ha desarrollado buena parte de la investigación moderna sobre la amnesia.

Pero una característica permanente de la ciencia es el hecho de que continuamente cuestiona las hipótesis vigentes (y es cuestionada por ellas). Siempre surgen nuevos casos o nuevas pruebas que arrojan nueva luz sobre los descubrimientos anteriores. La investigación sobre la memoria está experimentando en este momento una revolución que está modificando nuestra manera de pensar sobre el problema. Parte de las nuevas investigaciones

surgió a partir de ciertos descubrimientos de Milner que quedaron pendientes de explicación. En concreto, Milner descubrió que H. M. podía aprender a «dibujar en espejo», es decir, aprender a mejorar su capacidad de trazar dibujos de formas geométricas mediante un espejo que las reflejaba invertidas³. De este modo, cuando la mano conducía el lápiz al extremo izquierdo de un rectángulo, en el espejo aparecía como un movimiento a la derecha. Con práctica, resulta fácil aprender a adaptarse a tales deformaciones artificiales, y H. M., igual que los sujetos normales, aprendió a realizar la tarea y fue capaz de mantener su nivel de rendimiento de un día para otro, a pesar de que no se acordaba de haber hecho la tarea anteriormente.

Naturalmente, esto quería decir que en el cerebro entraba algún tipo de información, y que la incapacidad para almacenarla no era total. En las tareas que H. M. realizaba originalmente había implicado un importante componente motor, de modo que el descubrimiento de Milner se consideró como una prueba de que la memoria para las tareas motoras era diferente de la memoria para los acontecimientos más episódicos. Pero resulta que se trata de algo mucho más complicado que esta simple distinción.

Otro paciente, N. A., fue examinado en California por otro grupo de neuropsicólogos de gran talento⁴. Larry Squire y Neal Cohen decidieron profundizar en la cuestión de la capacidad de aprendizaje de este paciente⁵, el cual se comportaba a efectos prácticos exactamente igual que H. M. Squire y Cohen mostraron que N. A. podía aprender a leer en un espejo tan rápidamente como los sujetos normales. La prueba consiste en presentar rápidamente una palabra de 8 o 10 letras, como por ejemplo «perforar», reflejada en un espejo. El tiempo necesario para leer correctamente la palabra disminuye con la práctica.

Después, Cohen decidió trasladar su talento al Este y evaluó al paciente H. M. en otro tipo de tarea cognitiva. Cohen demostró que un paciente profundamente amnésico podía aprender a resolver el problema de la torre de Hanoi⁶. Se trata de un juego que requiere que el jugador resuelva el problema de cómo pasar un montón de anillos concéntricos, cada uno de un diámetro diferente y situados en uno de los tres palos que hay, a otro palo de tal manera que nunca se ponga un anillo grande encima de otro más pequeño durante el traslado. Son necesarios 31 movimientos para realizar la tarea de la forma más eficaz; cada movimiento debe ser exacto o de lo contrario se rompe la secuencia correcta y la tarea resulta imposible de resolver. Ahora se sabe que tanto N. A. como H. M. pueden realizar esta tarea, aunque en cada sesión de prueba nieguen haber visto el juego con anterioridad.

Según Squire y Cohen, sus estudios demuestran que los humanos tenemos dos tipos de memoria para el aprendizaje. Una se denomina «procedimental» y la otra «declarativa». La parte del cerebro que aprende procedimientos, es decir, cosas tales como destrezas motoras, habilidades cognitivas o estrategias como las que se usan en el problema de la torre de Hanoi, es diferente de la parte del cerebro que se ocupa del aprendizaje declarativo, esto es, del aprendizaje de acontecimientos. A cierto nivel de análisis, estos datos apoyan la idea de que el cerebro es modular. El módulo procedimental está intacto, pero el declarativo está en mal estado.

A mayor escala, el tema que empezó a adquirir más importancia conforme aumentó el número de estudios con pacientes amnésicos fue la cuestión de si estos pacientes conservaban realmente la información nueva. El grupo de Oxford, dirigido por Elizabeth Warrington y Larry Weiskrantz, fue el primero que sostuvo que el problema de la mayoría de los pacientes amnésicos es que

eran incapaces de acceder a las experiencias nuevas registradas7. Las experiencias se habían grabado pero, debido a la lesión del cerebro, la capacidad de acceder a la información almacenada estaba alterada. En resumen, parecía que los pacientes amnésicos podían ser definidos como personas con una baja capacidad de recuerdo pero capaces de reconocer que habían tenido una experiencia determinada anteriormente. De este modo, aunque los pacientes amnésicos podían ser incapaces de recordar 10 frutas que se les hubiesen mostrado una hora antes, sí podían reconocer muchas de ellas si se colocaban a su vista. En una prueba de reconocimiento semejante a esta, se les muestra una fruta nueva junto a otra vista con anterioridad y el paciente tiene que escoger la que ha visto antes. Puesto que el paciente amnésico es capaz de obtener en esta prueba unos resultados superiores a los esperables por azar, los investigadores comenzaron a preguntarse por qué el recuerdo evocado era tan pobre.

Así estaban las cosas cuando nuestro laboratorio se interesó por el tema. En una clínica neurológica es prácticamente imposible no verse absorbido por los problemas de la memoria. Se trata del problema que más frecuentemente se le presenta al neurólogo que se ocupa de las alteraciones del comportamiento. Los problemas de memoria son frecuentes en la gente mayor y se manifiestan en los casos de demencia. Aparecen en los alcohólicos y también debido a traumas cefálicos. Después de un paro cardíaco se suelen observar problemas de memoria. Pueden producirse después de un ataque cerebral, después de la aparición de tumores en el cerebro o como secuela de una multitud de problemas, tales como una simple encefalitis.

Es curioso, sin embargo, que muchos de los grupos de pacientes examinados sólo habían sido objeto de una evaluación superficial de sus problemas de memoria. Solamente se anotaba, y quizás incluso se medía, la posición de los pacientes en relación con grupos de control emparejados por la edad. Pero sus problemas particulares no se analizaban en profundidad.

Una de las razones por las que no se estudiaba en detalle a estos pacientes era que algunos de ellos padecían lesiones cerebrales complejas, mientras que otros, sorprendentemente, parecía que no sufrían lesión alguna. Puesto que una gran parte del trabajo de los neurocientíficos consiste en hallar las estructuras cerebrales específicas que se relacionan con problemas concretos, era mucho más atractivo estudiar pacientes que padecieran lesiones quirúrgicas agudas, es decir, una patología conocida y definible. Naturalmente, esta forma de proceder facilita mucho las cosas. Pero, hace unos 10 años, la situación empezó a cambiar en distintos frentes.

En primer lugar, se produjeron importantes cambios en las técnicas de neurorradiografía. Los británicos inventaron el escáner CT, gracias en parte a la financiación de los Beatles. Este singular aparato es capaz de focalizar rayos X prácticamente en cualquier plano de la cabeza que se tenga interés en examinar para detectar la presencia de tejido patológico. Desde el punto de vista neurológico, esto significa que actualmente los pacientes con problemas de memoria pueden ser definidos con mayor claridad.

En segundo lugar, los psicólogos experimentales dejaron de limitar su interés a la distinción entre memoria a corto y a largo plazo, es decir, las cuestiones relativas a la fase de entrada de la información. Empezaron a prestar más atención a los problemas de recuperación de la información y al modo como ésta se representa o se codifica internamente. (Cuando los psicólogos cambian sus modelos, el tipo de cuestiones que se plantean los científicos del cerebro también cambian.)

Finalmente, y como cabía esperar, prevaleció la opinión, sostenida principalmente por quienes estaban exclusivamente interesados en la estructura de la cognición normal, de que debía estudiarse cualquier tipo de paciente que en el examen mostrase una disociación funcional interesante. Este tipo de científicos no tienen ningún interés por la relación entre las estructuras y las funciones cerebrales. Desde este punto de vista, el paciente que sufre algún tipo de lesión cerebral pone de manifiesto únicamente que el sistema biológico tiene en cuenta determinadas distinciones, por lo que éstas deben incorporarse en un modelo de los procesos de memoria.

Pero hubo problemas con todos estos intentos de ampliar los horizontes del estudio de la amnesia. Por ejemplo, el escáner CT sólo registra lesiones mínimas, de manera que el denominado «correlato estrecho» del escáner CT no lo es en absoluto. Puede haber lesiones ocultas que el escáner no registra. De este modo pueden producirse correlaciones falsas entre un problema de memoria y las estructuras cerebrales responsables del mismo. Naturalmente, en esta observación está implícito el hecho de que al escáner CT pueden escapársele por completo lesiones reales.

Este y otros temas surgieron en 1980, cuando nuestras investigaciones estaban en pleno desarrollo. La mayor parte de las mismas han sido llevadas a cabo por Bruce Volpe y William Hirst. Estos dos investigadores están en general descontentos con el status quo de prácticamente cualquier cosa, y en concreto discrepan del modo como se ha enfocado el problema de la amnesia. Ellos aportan nuevas energías a un campo repleto de científicos creativos.

El Departamento de Neurología de la Universidad de Cornell prodiga una atención médica de inmejorable calidad. El director, Fred Plum, es ya una institución de su tiempo. Se trata de una persona con autoridad, enérgica, llena de curiosidad y, lo que es más importante, que apoya sin reservas nuestro trabajo. El personal interno también nos ayuda en la tarea de encontrar pacientes.

Hicimos saber que estábamos buscando casos de amnesia. Pero en la investigación clínica hay que ser prudentes. Hace unos años, un médico interno que estaba al corriente me llamó para decirme que había una paciente en el hospital que padecía la enfermedad de Huntington y que tenía, según él, ciertos problemas de memoria y de pensamiento. Reuní mi instrumental y me dispuse a examinarla. En contra del parecer del médico interno, la señora Levine parecía estar muy bien; pero entonces tuve una sospecha en el último momento y cogí el menú del hospital en el que se detallaba el desayuno de esa mañana. Le dije: «Bueno, señora Levine, ¿qué ha desayunado?» Ella farfulló algo diciendo que no lo sabía, y yo comencé a pensar que estábamos Îlegando a algo. Me incorporé, recogí mis notas y le dije que volvería después de la comida para hacer más pruebas sobre la memoria. Ella se mostró conforme, y según salía de la habitación de cuatro camas, me dijo de forma inequívoca: «Doctor, ¿tengo que aprender de memoria el menú?» A la señora Levine no le pasaba nada, al menos de momento.

Poco a poco, sin embargo, empezamos a encontrarnos con casos serios. Primero apareció un caso del que nos informó un neurólogo de Long Island. Luego nos llamó con otro caso uno de los profesores de neurocirugía. Con cada una de las llamadas nos llegaba una historia singular, tanto desde el punto de vista neurológico como psicológico. La clave estaba en interpretar correctamente cada uno de ellos.

Uno de los pacientes, L. K., se comportaba de forma

parecida a H. M. La primera vez que fuimos a pasar pruebas a L. K. lo hicimos en nuestra furgoneta especial. Nos recibió la encantadora esposa de L. K., que inmediatamente nos advirtió que su marido no era muy bueno para los nombres, pero que su memoria era excelente para los números. La escuchamos con atención y nos pusimos a examinar a L. K. No llevábamos ni cinco minutos con el paciente cuando él también nos dijo que su memoria era muy mala para los nombres, pero que era muy buena para los números. En sus días había llevado una tienda y siempre tuvo que sumar el precio de los artículos, por lo que había adquirido una gran destreza con los números. Tres horas más tarde, L. K. nos había repetido esta historia como 20 veces, cada vez con renovado entusiasmo. Finalmente, George Miller, que estaba empezando a pensar que se trataba de una coletilla rutinaria, exclamó: «¿Cómo no nos lo había dicho antes?», a lo que L. K. respondió tranquilamente: «No me lo habían preguntado».

Después de pasar muchas pruebas a varios pacientes, comenzó a surgir un perfil de comportamiento. Los ocho pacientes de uno de los grupos estaban claramente incapacitados para recordar acontecimientos al cabo de un tiempo de haberse producido. Pruebas tan sencillas como el recuerdo de una lista de palabras de 10 elementos frecuentes podían realizarlas correctamente después de una demora de 30 segundos. No obstante, si el examinador esperaba un poco más, el grupo de control compuesto de sujetos normales realizaba bien la tarea, pero los amnésicos tenían muchísimas dificultades para recordar las palabras.

Al mismo tiempo —y esto es lo realmente importante— estos pacientes amnésicos sí podían reconocer las palabras de la lista. Este tipo de prueba no plantea las mismas demandas a los pacientes. A cada paciente se le presentan dos palabras, una procedente de la lista original y otra nueva. La prueba consiste meramente en que el paciente elija una de las palabras, aun cuando niegue verbalmente haberlas visto antes. En este tipo de prueba de «elección forzosa», el amnésico revela que en cierta forma recuerda la información originalmente presentada.

Esta situación permite efectuar algunos experimentos interesantes. Nuestra tarea consistía en comprender y en poner a prueba aquello que fallaba en la codificación inicial de la información nueva y que hacía difícil su recuperación. Cuando reflexionamos sobre este problema, resulta evidente que ninguna información nueva es un elemento aislado, como si flotase en el tiempo y en el espacio. Toda experiencia se da en un contexto y, puesto que somos criaturas dotadas de emociones, cada experiencia va asociada a una valencia de placer o desagrado. La primera cuestión que se plantearon Hirst y Volpe fue si los pacientes amnésicos codificaban o no los elementos nuevos que tenían que aprender en la secuencia temporal adecuada8. Normalmente esto suele hacerse automáticamente. Por regla general, podemos recordar a voluntad los acontecimientos de la mañana o de la semana según el orden en que se han producido. No necesitamos pensar directamente en la codificación temporal de la información; lo hacemos automáticamente. ¿Ocurre lo mismo en el caso de los amnésicos? ¿Funcionan correctamente sus procesos automáticos?

Los experimentos que he descrito pusieron de manifiesto que los pacientes estaban gravemente incapacitados en ese tipo de pruebas. En una de las pruebas diseñadas con este fin, los examinadores demostraron que los pacientes reconocían algunos de los ítems que se les presentaban, pero no podían indicar si uno se había presentado antes o después que otro. En una de las variantes de la prueba, los examinadores utilizaban sencillas noticias cotidianas como ítems. El grupo de pacientes estaba com-

puesto de personas muy inteligentes, y la mayoría de ellas leían el New York Times y veían en la televisión las noticias de la tarde. Esto hacía posible pasarles una prueba sobre los acontecimientos que habían sido noticia para indagar en su recuerdo del orden temporal. Por ejemplo, se les preguntó a los amnésicos si el asesinato de Sadat había sucedido antes o después del intento de asesinato de Ronald Reagan (hay que tener en cuenta que este experimento se llevó a cabo en 1981). Esta prueba les resultó extraordinariamente difícil, a pesar de que los amnésicos sabían que se habían producido ambos acontecimientos.

El descubrimiento de que los pacientes amnésicos tienden a recordar «qué» pero no «cuándo», habla en favor de la existencia de ciertos procesos de orden superior en la memoria humana. Expresado en el marco de mi perspectiva modular, cabría decir que en alguna parte del cerebro hay un módulo que identifica y contextualiza temporalmente la información nueva. Se trata de un módulo que supervisa la información, es decir, que se encuentra a un nivel superior al del registro efectivo de la misma. El módulo de registro temporal pone una etiqueta sobre la información. Si el módulo está dañado, la información nueva queda sin etiquetas temporales. Es evidente que un deterioro de este tipo puede afectar enormemente al proceso normal de recuerdo, pues las señales críticas de identificación no aparecen asociadas a la nueva información.

Entre los pacientes amnésicos hay otros ejemplos de alteración de procesos que son principalmente automáticos en el caso de los sujetos normales. Considérese, por ejemplo, el proceso de asignar un valor a la información nueva. La pista para llevar a cabo este experimento procedía del hecho de que los pacientes amnésicos suelen tener un comportamiento aparentemente «vacío» y distante. Aunque pueden ser muy inteligentes y socialmente cons-

cientes, provocan una acusada sensación de distancia personal. Hablan de todos los acontecimientos con la misma intensidad o, para ser exactos, con la misma falta de intensidad. Kathleen Redington y yo nos preguntamos si estas personas podrían adquirir preferencias nuevas⁹. Pensábamos que quizás no les funcionasen adecuadamente los mecanismos cerebrales que normalmente asignan valor emocional a los estímulos nuevos; de ahí que su comportamiento pareciera falto de energía.

Les aplicábamos una prueba sencilla desarrollada por el psicólogo social Roberty Zajonc. En resumen, consiste en mostrar al paciente una serie de dibujos de rostros humanos o de otros estímulos. En la serie, algunos rostros aparecen más frecuentemente que otros. A un sujeto normal le gustan los rostros que ve con frecuencia, mientras que los menos frecuentes le gustan menos. Este hecho es una fuente inapreciable de satisfacción para la industria de la publicidad.

Cuando se administra esta prueba a sujetos amnésicos, muestran una increíble incapacidad para adquirir preferencias. Normalmente, estos sujetos no responden sintiendo que les gustan más los rostros vistos con mayor frecuencia, aunque son capaces de indicar qué rostros se les han presentado con anterioridad. Parece que tienen deteriorado otro proceso automático: el que asigna valores a la información nueva. Una vez más, desde el punto de vista modular, suponemos que la lesión cerebral que padecen ha afectado al sistema que se ocupa de estas funciones. Cuando este sistema de asignación de valores está deteriorado, la información nueva deja de recibir otra etiqueta, lo que hace más difícil todavía el recuerdo.

La actuación de estos procesos automáticos supone consumo de energía, exactamente igual que supone gasto de energía el hecho de mover un brazo o de respirar. Se trata de auténticos sistemas o módulos cerebrales que lle-

van a cabo sus funciones específicas en la tarea de codificar la información nueva. Si esto es cierto, es razonable plantearse cuál es su localización en el cerebro. La mayoría de los científicos del cerebro actúa como si hubieran nacido y se hubieran criado en Missouri: quieren ver para creer; hay que mostrarles el lugar donde se localizan esos módulos.

Hasta hace muy poco, esta demanda era imposible de satisfacer. Detectar lesiones cerebrales en sujetos humanos, a menos que se trate de una lesión grave, no resulta fácil. El escáner CT puede llevar a error al experimentador debido al problema anteriormente mencionado de que una lesión detectada por este procedimiento aporta información mínima. A causa de estos defectos, los tan cacareados correlatos cerebrales de los trastornos de la conducta establecidos por el escáner CT están dejando de tener vigencia. No son lo suficientemente precisos.

Afortunadamente, en varios centros médicos hay otro aparato disponible: las exploraciones por tomografía de emisión de positrones, o exploraciones PET, para abreviar. Al igual que el escáner CT, el PET toma imágenes del cerebro vivo en distintos niveles. Sin embargo, a diferencia de las exploraciones CT, las PET muestran perfiles del modo como funciona realmente el cerebro, midiendo con precisión parámetros biológicos tales como la velocidad de circulación de la sangre, el ritmo del metabolismo celular o el volumen de sangre que se distribuye en determinadas áreas. Todo esto lo realiza por medio de cámaras especiales que son sensibles a la radioactividad y que se colocan estratégicamente en torno a la cabeza, de tal modo que pueden detectar ciertos compuestos químicos marcados radioactivamente que se han invectado previamente al paciente o que éste ha inhalado. La naturaleza química de estos compuestos varía en función de lo que se quiere medir. No obstante, tienen algo en común: son

compuestos que emiten positrones. Esto significa que el compuesto emite un positrón que, al chocar con un electrón, resulta aniquilado. Este choque produce dos rayos gamma que salen del tejido cerebral describiendo un ángulo de 180°. La cámara, sensible a la radioactividad, detecta estos rayos y los envía a un gran ordenador que reconstruve la localización cerebral en la que ha tenido lugar ese acontecimiento físico-químico. A continuación, el ordenador construye una imagen que equivale a un mapa metabólico del cerebro vivo. Este es el mecanismo esencial del PET, y es todo lo que necesitamos saber de cara a nuestro propósito actual. Este no es otro que poner de manifiesto la existencia de una tecnología médica que actualmente permite una medida más precisa de las enfermedades cerebrales del ser humano. ¿Puede utilizarse esta nueva tecnología para localizar nuestros módulos ocultos?

La respuesta es claramente afirmativa, si bien en el momento de escribir estas líneas los esfuerzos por hallar respuestas fiables no han hecho más que empezar. Comenzamos nuestros estudios actuales gracias a una conversación que tuve con una de las autoridades mundiales en la materia, el doctor Marcus E. Raichle, de la Universidad de Washington, St. Louis. El doctor Raichle está a cargo del explorador PET de su universidad y es un hombre de enorme talento y energía. Le hablé de los pacientes de Volpe y le dije que padecían amnesia pero que al mismo tiempo no tenían lesiones cerebrales identificables, a juzgar por los análisis CT. En la época en que se produjo nuestra conversación, había grandes expectativas de que la nueva tecnología pudiera captar estados cognitivos específicos con sus análisis. Por ejemplo, pensar en Keats podría activar áreas cerebrales distintas de las que se activarían al pensar en los Beatles. Esta cuestión está todavía abierta y constituye un problema difícil de resol-

ver, pero yo hice la sugerencia de que explorásemos a un paciente amnésico para ver si podía detectarse algún tipo de patología cerebral. El doctor Raichle estuvo totalmente de acuerdo, y, al cabo de unas semanas, Volpe y su primer paciente volaban hacia St. Louis¹⁰.

Nuestro matrimonio interinstitucional funcionó a las mil maravillas, en gran parte debido a la inagotable generosidad del doctor Raichle, y, hasta la fecha, el equipo ha hecho varias observaciones interesantes. Para empezar, el escáner PET descubrió patologías totalmente ignoradas por el escáner CT. Se descubrió que el hipocampo del paciente sometido a prueba funcionaba a un ritmo metabólico inferior al normal. Esto indicaba que su hipocampo no funcionaba adecuadamente, por lo que podría ser la causa del problema de memoria. Este caso cuadra muy bien con el famoso caso de H. M., el cual había sufrido la extirpación quirúrgica del hipocampo. Pero todavía hay más.

El viejo juego de dar a alguien una respuesta y esperar que encuentre la pregunta adecuada es algo cotidiano en la ciencia. El explorador PET proporciona abundante información. Cada imagen o parte del cerebro puede mostrar perfiles metabólicos relativamente detallados de todas las estructuras cerebrales. Junto a esta información, también proporciona datos sobre el flujo sanguíneo en estas mismas áreas. Así se puede comprobar si el flujo sanguíneo y el metabolismo nervioso subyacente se mantienen el mismo nivel en cada momento. Tiene sentido que sea así, puesto que es la sangre la que aporta el oxígeno necesario pare el funcionamiento de las células nerviosas. Con todo, a veces se produce una discrepancia entre los dos procesos. El flujo sanguíneo permanece elevado, pero el metabolismo disminuye, o viceversa. Todo esto sale a la luz y nos indica que existen procesos anormales.

No es fácil interpretar todos estos datos. Si bien es relativamente fácil detectar una anormalidad, es relativamente difícil asegurarse de que se trata de la única anormalidad existente. Y si de lo que se trata es de hallar y probar que existe un determinado correlato cerebral de un problema de comportamiento, el modo de abordar el problema se vuelve todavía más complicado. Si a todo esto añadimos el hecho de que las teorías psicológicas cada vez son más complejas e indican que el sistema de memoria opera utilizando varios módulos, la tarea que le queda a los científicos que trabajan con el PET es aún más peliaguda. Pero es indudable que tienen que aceptar el reto, y los primeros estudios ya están en marcha. La utilización de nuevas técnicas estadísticas puede hacer posible la identificación de otras patologías. La identificación de patologías diferentes de la que he mencionado y su posible localización específica en el cerebro puede darnos pistas acerca de los correlatos cerebrales de los módulos que manejan procesos como la codificación temporal, la codificación afectiva y los mecanismos de atención. Podría ocurrir que los mecanismos de la atención fueran los sistemas clave que se ven afectados en los problemas de memoria. Me explico.

Hay otras teorías en las ciencias psicológicas que merece la pena tener en cuenta. En términos generales, estas teorías tienen que ver con lo que recibe el nombre de «asignación de recursos», término que hace referencia a que cada tarea mental que resuelve una persona en un momento dado supone la inversión de una cierta cantidad de los recursos totales de que dispone esa persona para resolver problemas. Dicho de forma más sencilla, no debería sorprendernos saber que disponemos de capacidades limitadas para el procesamiento de información nueva, y que estas limitaciones están ligadas a la actividad biológica del cerebro. ¿Se encuentran estos sistemas limi-

tadores principalmente en la corteza y están relacionados con los procesos lingüísticos y perceptivos, o se trata más bien de características más generales del cerebro que forman parte de su funcionamiento global? ¿Sería más correcto considerarlos como una especie de combustible que utilizarían las células del cerebro?

Para estudiar este problema recurrimos de nuevo a nuestros sujetos con el cerebro dividido, y Holtzman y yo nos planteamos una serie de cuestiones muy sencillas¹¹. Si una de las mitades del cerebro se ocupa de la resolución de un problema y actúa con un cierto grado de eficacia, ¿se ve influido su rendimiento por el grado de actividad en que se ve implicada la otra mitad del cerebro? ¿Influye el nivel de dificultad del problema? Si los dos sistemas fuesen completamente independientes, no debería haber ningún efecto. Pero si los dos sistemas utilizasen recursos comunes representados biológicamente en las estructuras cerebrales a las que todavía está conectada cada mitad del cerebro, entonces tendría que producirse algún efecto.

Y existe un efecto mensurable. La capacidad global de una de las mitades del cerebro se ve más afectada cuando la otra mitad se ocupa de un problema difícil que cuando se ocupa de uno fácil. A partir de este tipo de experimento podemos empezar a comprender de qué modo conceptos psicológicos como el de asignación de recursos pueden estar organizados en sistemas biológicos reales. Dicho en otras palabras, un problema definido en un nivel de análisis determinado, como el concepto de recursos o energía psicológica, podría perfectamente tener un correlato biológico directo en la cantidad de energía neuronal disponible. Esta energía está disponible en el cerebro de forma limitada. De los estudios sobre la asignación de recursos parece desprenderse que el cerebro dispone globalmente de un número fijo de recursos, que éstos están relaciona-

dos con las estructuras profundas del cerebro y que no son divisibles. Si no fuera así, el paciente con el cerebro dividido no daría muestras de interacción entre los dos hemisferios.

Llegados a este punto, estamos a un paso de plantear la cuestión de cómo se altera el ajuste entre la energía psicológica y la energía biológica en el caso de la amnesia. Quizás algunos de los procesos psicológicos automáticos a los que me he referido, como la codificación temporal de la información, traten de funcionar recurriendo a recursos energéticos que, en el cerebro lesionado, se encuentran alterados. En estos pacientes podría producirse un descenso general de la actividad biológica del cerebro debido a una disminución del flujo sanguíneo. Una posibilidad sumamente interesante es que los marcadores metabólicos posibiliten la identificación de los módulos específicos que toman parte en los distintos aspectos del funcionamiento de la memoria. Desenmarañar esta posibilidad nos mantendrá ocupados durante algún tiempo.

Las teorías sobre el comportamiento humano proceden de distintas fuentes; algunas de las ideas más importantes derivan de Freud. Su ambiciosa teoría psicodinámica contiene muchas propuestas sobre las causas subvacentes del comportamiento y sobre nuestra vida mental privada. Un principio esencial de la teoría freudiana es la importancia que concede a los procesos inconscientes en la dirección del comportamiento. Los procesos inconscientes pueden reflejar actitudes que no queremos admitir que poseemos. Con todo, muchas de nuestras acciones tienen que explicarse por medio de esas actitudes y mediante nuestra necesidad de satisfacer esos procesos. A su manera, Freud presagió gran parte de la teoría cognitiva moderna. Se negó a admitir la noción de proceso consciente unificado y abogó, a principios de siglo, por un sistema mental variado y dividido en compartimentos.

Se puede adaptar fácilmente la teoría freudiana a la

teoría de los módulos cambiando su concepto de «procesos inconscientes» por la idea, expuesta en este libro, de «módulos mentales coconscientes no verbales». Una tendencia de respuesta, una decisión para actuar por parte de un módulo mental no verbal, no es inconsciente, sino que es perfectamente consciente y susceptible de afectar a la acción. Una de las características de dicho módulo —el hecho de que no pueda comunicarse internamente con el sistema cognitivo y lingüístico del hemisferio dominante— no puede tomarse como prueba de que sea «inconsciente». Con esta única corrección de la formulación de Freud, buena parte de las cosas que a él le parecían importantes en la vida mental puede reformularse en los términos mecanicistas modernos.

La psicología experimental actual ha vuelto a prestar atención a la idea de procesamiento inconsciente. Operativamente, esto significa que a los sujetos se les pueden presentar estímulos experimentales de los que no pueden informar verbalmente, pero pueden influir sobre sus respuestas posteriores. Se trata de la versión científica del viejo fenómeno de la percepción subliminal.

Junto a la noción de proceso inconsciente está, desde luego, la de proceso automático, que se ha descrito al ocuparnos de los fenómenos de la memoria. A medida que se almacenan informaciones nuevas en nuestros cerebros, hay unos procesos automáticos que aseguran su etiquetado en función del momento en que tuvieron lugar. La imposición de un orden temporal sobre la información es un proceso inconsciente que, sin embargo, se produce normalmente durante el estado de vigilia.

Hace unos años, en el curso de una conferencia sobre la idea de los módulos mentales y el modo en que, en mi opinión, se produce gran parte del procesamiento cognitivo en ellos, se levantó una mano del auditorio y una voz sosegada me preguntó: «¿Cuántos módulos hay y qué

contienen?» Yo respondí un poco en broma diciendo que confiaba en que uno de ellos estuviera ocupándose de la respuesta a dicha cuestión, pero que en realidad yo no lo sabía. Sin embargo, la cuestión no me ha abandonado, porque un signo de que la comunidad científica apuesta por cualquier investigador consiste en decirle más o menos lo siguiente: «De momento aceptamos su formulación, ahora siga caracterizando los elementos de su modelo.» Esa es la esencia de la ciencia, seguir profundizando en la investigación y ver en qué medida se puede mantener una idea inicial bajo diversas condiciones.

Este es el contexto en el que resultan tan interesantes los paradigmas desarrollados por la psicología que estudia sujetos normales. El trabajo de Anthony Marcel en la Universidad de Cambridge ha sido de lo más notable en los últimos años1. Muchos de sus estudios hacen uso de lo que se conoce como tarea de decisiones léxicas. En la aplicación normal de esta prueba se le presenta claramente una palabra a un sujeto. Posteriormente se le presenta una secuencia de letras que no es una palabra, o bien una palabra que puede estar o no relacionada con la anterior. Muchos investigadores han demostrado que una palabra relacionada con la primera palabra o palabra «primaria» se identifica más rápidamente como palabra que otra no relacionada. Marcel ha presentado recientemente resultados según los cuales este efecto de «preparación» o de «priming» se produce incluso cuando la primera palabra, que normalmente se puede ver con claridad, se proyecta tan rápido que no se percibe conscientemente. Si prosigue esta línea de investigación, pueden llegar a plantearse cuestiones acerca de lo compleja que pueda ser la información facilitada por los procesadores inconscientes (léase «módulos mentales no verbales»), si éstos se fatigan o no, cuáles son las características de su memoria, o de qué modo interactúan los sistemas inconscientes. Actualmente se están llevando a cabo experimentos para responder a estas cuestiones.

Nuestro propio trabajo de laboratorio sobre este importante tema se realiza de diversas maneras. Una de las demostraciones más espectaculares de la existencia de procesos inconscientes que influyen aparentemente en el comportamiento consciente procede de los estudios recientes que Holtzman y yo hemos realizado con J. W. El experimento es tan sencillo como revelador².

Se pedía a J. W. que fijase su mirada en un punto y se le proyectaba un 1 o un 2 al hemisferio izquierdo o al derecho. No tiene nada de sorprendente que el sujeto fuese capaz de nombrar el número correctamente cuando se proyectaba al hemisferio izquierdo. Lo sorprendente era que, si el cerebro izquierdo de J. W. sabía que el cerebro derecho sólo podía ver o un 1 o un 2, era capaz de decir exactamente cuál de los dos números se proyectaba al cerebro derecho en los ensayos realizados con este hemisferio. Sabemos por distintas razones que el cerebro que hablaba en este caso no era el hemisferio derecho de J. W., sino su cerebro izquierdo, desconectado del derecho. El cerebro derecho es de alguna manera capaz de controlar el comportamiento lingüístico correcto del izquierdo.

Es interesante plantearse si el cerebro izquierdo era o no consciente de que su aparato lingüístico basado en el hemisferio izquierdo poseía la información necesaria para dar la respuesta correcta. ¿No podría ser que el cerebro derecho hubiera accedido de alguna forma al sistema lingüístico-motor del hemisferio izquierdo y hubiera depositado en el mismo la información precisa para la respuesta verbal, pero que los procesos conscientes del cerebro izquierdo no tuviesen acceso a dicha información? Nuestro estudio indica que esto es exactamente lo que sucede. Pensemos en el experimento anterior. Después de la proyección del número 1 o 2 al cerebro dere-

cho, estos mismos números se proyectan al cerebro izquierdo. Si el cerebro izquierdo es consciente por lo general de la información, es decir, si es capaz de acceder a la información del sistema del habla, le habría de ser posible señalar la respuesta correcta. Sorprendentemente, no es capaz de hacerlo. En este tipo de tarea el cerebro izquierdo actúa al azar.

Esta sorprendente disociación demuestra claramente que un sistema consciente no puede acceder a toda la información que gobierna lo que consideramos como una respuesta consciente. Todavía no comprendemos perfectamente de qué modo y por medio de qué rutas el cerebro derecho es capaz de acceder al izquierdo; pero hay pocas dudas de que lo hace, y de tal modo que el cerebro izquierdo no se percata del proceso. Una vez más, un paciente neurológico nos ilustra sobre los múltiples niveles que están presentes en la elaboración de eso que percibimos globalmente como «cognición personal».

Puesto que mi laboratorio se concentra de modo global en el enfoque neurológico, se nos han ofrecido otras oportunidades para explorar estas cuestiones. Una de estas oportunidades tiene que ver con el famoso fenómeno de la «visión ciega» (blind-sight). Los primeros que presentaron informes sobre este fenómeno fueron un grupo de investigadores británicos, y desde entonces distintos investigadores lo han confirmado³. Desafortunadamente, nosotros no hemos podido confirmar su existencia, y siendo este el caso, nos hacemos una idea de lo difícil que va a ser estudiar los módulos cerebrales independientes.

La visión ciega es un estado que se da en pacientes que han sufrido lesiones en los centros corticales del cerebro responsables de la visión. Se piensa que las partes del cerebro que procesan la información visual son los lóbulos occipitales. La información llega a estos centros por medio de la retina que, mediante una compleja red de relés neuronales situados en ella, la envía en primer lugar al núcleo geniculado lateral. Este es una estructura laminar (en capas) del tálamo y constituye la primera estación de importancia en la ruta a la trascendental corteza visual primaria. Digo «trascendental» porque durante años se ha considerado que únicamente la corteza visual primaria —esto es, los lóbulos occipitales— es capaz de procesar información visual. Se ha sostenido que esta región recibe la información exclusivamente de la estación del cerebro medio, el núcleo geniculado lateral, y que posteriormente, después de procesarla, la envía a otras regiones corticales para un análisis más profundo.

De acuerdo con esta simple teoría del sistema visual, cuando un paciente sufre una lesión en el lóbulo occipital debe quedar ciego. La principal conexión entre el ojo y otras regiones del cerebro ha sido anulada por la lesión. Sin embargo, los primeros informes clínicos relativos a la «visión ciega» afirmaban que estos pacientes podían captar información tosca en su zona ciega. Lo sorprendente de la naturaleza de su visión era que los pacientes afirmaban que no eran conscientes de que pudiesen ver nada. Con todo, si se permitía que su mano o sus ojos señalaran un estímulo presentado en el campo ciego, los pacientes se dirigían a la posición correcta; de ahí el término de «visión ciega». Se ha informado de resultados similares en el caso de animales.

En realidad, tales informes no contradicen otras características anatómicas conocidas del sistema visual animal o humano. Ahora se sabe que el cuerpo geniculado se proyecta sobre otras áreas corticales (véase el capítulo 2). Resulta que la retina, además de enviar la mayor parte de sus fibras al núcleo geniculado lateral, envía también fibras a otra estructura del mesencéfalo, denominada «colículo superior». Se trata de una estructura de buen tamaño, si-

tuada justamente debajo de los lóbulos occipitales. El colículo envía, a su vez, fibras a otros lugares, al tiempo que envía y recibe fibras procedentes del lóbulo occipital situado encima del mismo. De este modo, se ha argumentado que esta estructura podría funcionar como un módulo que controlaría movimientos producidos inconscientemente, tales como los observados en los pacientes con visión ciega. En consecuencia, estos pacientes parecen candidatos ideales para el estudio de un módulo independiente, y eso es lo que nos disponemos a hacer.

La primera tarea consiste en encontrar un paciente con la lesión apropiada. Por lo general, nos enteramos por vez primera de la existencia de candidatos en el informe matinal, una reunión que tenemos todos los días de la semana a las 8,30. El jefe médico interno informa de todos los ingresos en el hospital durante las 24 horas precedentes. En estas reuniones están presentes todos los profesores clínicos que prestan atención médica. Se trata de las personas que realizan la verdadera neurología del hospital, es decir, de los doctores a cargo de los enfermos. Normalmente, también está presente el director del departamento, Fred Plum, que aprovecha la ocasión para înformarse del estado de unos 40 pacientes y para impartir algunas enseñanzas al grupo actual de médicos internos sobre neurología y medicina. En la práctica, cada paciente admitido en el servicio de neurología del Hospital de Nueva York disfruta del beneficio añadido de que su médico personal escuche la opinión de los demás médicos sobre su caso.

Una de estas reuniones matinales resultó inolvidable. Uno de los neurólogos asistentes aquel día era el doctor Frank Petito, hombre ingenioso y de extraordinario talento, enérgico y lleno de sabiduría médica. También es importante saber que el doctor Petito podía haber elegido llevar una vida mucho más cómoda; en cierto modo es un mago de las finanzas y su famoso padre había sido vicepresidente de la compañía Morgan Stanley. Los médicos estaban reexaminando el caso del señor X, que tenía un tumor cerebral benigno que había que extirpar. En ese momento, el doctor Plum vio la oportunidad de hacer comprender algo valioso desde el punto de vista médico y sociológico a los nuevos médicos internos.

«Una de nuestras tareas es dar a conocer el hecho de que muchos tipos de tumores cerebrales son curables. Consideremos el caso de mi buen amigo, el señor X. Creyó que había llegado su fin. Lo trajimos aquí, le diagnosticamos el tumor, descubrimos que era benigno y luego se lo extrajimos. Una vez recuperado de la operación, el señor X volvió a Wall Street y cerró una de las mayores operaciones financieras de nuestra época. ¿No es así, Frank?»

Petito, que conocía la operación financiera en cuestión (en la cual no participaba la Morgan Stanley), comprendió que era su oportunidad. Levantó la vista de su cuaderno de notas y exclamó: «Pura calderilla, Fred, pura calderilla.» Las interacciones son inapreciables y todos se benefician de ellas.

En otra de las reuniones, Bruce Volpe se enteró de un caso que se ajustaba perfectamente a nuestras necesidades. Una mujer, a la que llamaremos B. H., había sufrido una rotura de aneurisma en el lóbulo occipital derecho. Iba a ser operada para reparar su arteria rota, y en el curso de la operación habría que sacrificar partes del lóbulo occipital derecho debido a la localización del aneurisma. De este modo, quedarían afectadas o ciegas partes de la visión de su campo visual izquierdo, pero el resto de sus estructuras visuales permanecerían intactas y normales. Esta mujer podría dar muestras de visión ciega.

Fue en ese momento cuando Holtzman y su rastreador óptico entraron en acción. Holtzman había estudiado

detenidamente la literatura sobre el fenómeno de la visión ciega y había encontrado algunos problemas en los primeros datos obtenidos. Es axiomático que, cuando uno estudia el sistema visual, tiene que hacerlo con sumo cuidado. Probablemente se trata del sistema sensorial mejor estudiado desde hace décadas.

Holtzman puso a punto su ordenador y el rastreador óptico⁴. El rastreador óptico es un dispositivo ultrasensible que mide la posición exacta de los ojos; si no con toda exactitud, sí con la mayor precisión que se ha medido hasta ahora en este contexto. Funciona del siguiente modo (aunque no todo es tan sencillo en realidad): se proyecta una luz infrarroja sobre uno de los ojos sin que el paciente se dé cuenta. La luz infrarroja es invisible para el ojo desnudo, pero hay unos detectores especiales que miden exactamente sus reflejos desde distintas partes del ojo. Mediante la comparación de los distintos reflejos, operación que realiza el ordenador, se obtiene un registro exacto y en tiempo real de la posición del ojo.

Esto era de suma importancia, porque la tarea de Holtzman consistía en limitar los estímulos visuales únicamente al punto ciego producido por la lesión quirúrgica. Si la luz procedente de los estímulos se desviase a la parte normal de la retina, cualquier conclusión sobre la existencia de procesamiento visual de tipo «visión ciega» sería de escaso interés. Si el paciente moviese sus ojos de tal forma que el estímulo cayese en la parte apropiada de la retina, el ordenador captaría, gracias al rastreador, el movimiento en el momento de iniciarse e inmediatamente suprimiría la proyección del estímulo. De este modo se impide que haya trampas en nuestro juego visual.

La prueba en sí misma es muy sencilla. Se presentaban 4 X que formaban un cuadrado en la parte ciega del campo visual del paciente. Después de cierta señal, una de las 4 X se iluminaba, y la tarea de B. H. consistía en mover sus ojos hacia la X iluminada. No hay nada más fácil y, naturalmente, siempre que se aplicaba la prueba a su campo visual derecho, la paciente la resolvía de manera impecable. Sin embargo, cuando B. H. intentaba realizar la tarea con la luz crítica presentada en su campo visual ciego, era incapaz de obtener resultados que estuvieran por encima del nivel de azar, aún después de miles de ensayos.

No cabe duda de que no supone nada del otro mundo decir que alguien no puede ver de verdad en un campo visual ciego. Los ciegos son ciegos. Pero en este caso se trata de algo verdaderamente importante, porque existen todas las razones del mundo para que, dada la anatomía del cerebro, las cosas fuesen de otro modo. Después de todo, B. H. sí posee esas otras estructuras, es decir, los otros módulos. ¿Por qué no pueden llevar a cabo la tarea estos módulos? Esta es la cuestión más importante. El hecho de que la denominada «visión ciega» sea un campo repleto de errores experimentales es sólo de importancia secundaria.

Proseguimos con entusiasmo nuestros estudios sobre el tema. Pensamos que quizás lo que sucedía era que el módulo del mesencéfalo solamente podía funcionar al recibir la entrada normal de información procedente del córtex visual situado encima de él. Es decir, que para un módulo independiente, podría resultar devastador el tener que funcionar de forma aislada. La mayor parte de los módulos operan como parte de un sistema interactivo más amplio. No hay duda de que un carburador es distinto de un pistón. Con todo, sería muy difícil estudiar las funciones del pistón si el carburador no estuviera en funcionamiento.

Volvimos al laboratorio. Ahora estudiamos a dos de nuestros pacientes con el cerebro dividido, J. W. y V. P. Estas dos personas no padecían, como se recordará, lesiones en la corteza visual. En consecuencia, los módulos corticales y subcorticales permanecían intactos. Además, es un hecho que los módulos subcorticales están interconectados por medio de un sistema de fibras neurales. Como estos pacientes tenían sus sistemas corticales desconectados, estábamos en condiciones de estudiar las interacciones subcorticales e inferir lo que estos módulos subcorticales son capaces de hacer. Y eso fue precisamente lo que hizo Holtzman.

Cuando el cerebro está dividido, el cerebro izquierdo no puede explicar verbalmente cuál de las 4 X se ha proyectado en el campo visual izquierdo. Puesto que los estímulos del campo visual izquierdo se proyectan sobre el
cerebro derecho desconectado, este resultado no era sorprendente. Lo que sí resultó sorprendente fue que, si se le
pedía al cerebro izquierdo que moviera los ojos hacia la X
del campo visual derecho correspondiente con la X que
había estimulado al hemisferio opuesto, los ojos se movían en la dirección apropiada. Era como si los lóbulos
subcorticales pudieran funcionar para realizar esta tarea y
lo hicieran al margen del mecanismo de control consciente.

Todos nos alegramos. Los módulos pueden estudiarse y podemos evaluar sus diversas funciones naturales. En este caso, observamos cómo uno de los módulos puede computar la información relativa a la localización espacial, controlar los ojos y facilitar una respuesta coordinada. También pudimos confirmar a partir de este experimento que los módulos que manejan la información espacial son diferentes de los que manejan la información perceptiva. En estos experimentos complementarios se mostró que la comparación intercerebral no era posible si se utilizaban como señal 4 estímulos geométricos diferentes en lugar de 4 X. Los módulos subcorticales sólo tratan información espacial, no geométrica.

Sin embargo, para el investigador interesado en la auténtica sustancia de la cognición, la sustancia del lenguaje, de la percepción y de las imágenes mentales, sería del máximo interés realizar estudios sobre la separación de los módulos a nivel cortical. Con este fin, podemos imaginar que la existencia de microlesiones estratégicamente localizadas a lo largo del córtex podría provocar ese tipo de desconexiones corticales entre los módulos, aportando así más pruebas confirmatorias de la teoría modular.

El recurso a la alta tecnología no tiene por qué ser siempre el modo de obtener respuestas válidas a preguntas interesantes. Cuando no hay más remedio, hay que utilizarlo. Pero también es importante la utilización prudente de pacientes en situación neurológica o quirúrgica especial. La oportunidad de poner en práctica esta idea se nos presentó cuando el equipo de neurocirugía de Wilson y Roberts decidieron efectuar operaciones de sección del cuerpo calloso —la gran vía de conexión intercerebral—en dos etapas y en dos momentos diferentes. El primer paciente sometido a este procedimiento fue J. W. Nosotros estuvimos presentes durante todas las fases de la operación.

Seccionando el cuerpo calloso en dos partes se puede estudiar el fenómeno de la transferencia parcial. No hay duda alguna de que, cuando el cuerpo calloso está intacto, toda la información presentada al cerebro derecho se transfiere al izquierdo para ser analizada verbalmente. Hay pocas oportunidades de observar si la transferencia en masa consiste en múltiples módulos enviando la información relevante. La decisión quirúrgica de seccionar solamente una parte de las vías nerviosas permite examinar la posibilidad de que se produzca transferencia parcial de información, es decir, saber si únicamente algunos de los módulos pueden informar al cerebro izquierdo desde el derecho.

Después de recibir la llamada de Dartmouth, John Sidtis y yo viajamos hasta Hannover. Sidtis nunca había visto una intervención quirúrgica y tenía muchos deseos de observar la totalidad del proceso, incluidas las batas verdes y todo lo demás. Lo primero que hicimos fue, naturalmente, realizar una cuidadosa evaluación preoperatoria de J. W. Se proyectaron en cada cerebro palabras y dibujos de todos los tipos, y como es normal en el caso de un cerebro intacto, el cerebro izquierdo nos contó todo acerca de la información visual presentada exclusivamente al derecho. Todas las vías intercerebrales de J. W. funcionaban. Al día siguiente, fue sometido a la intervención quirúrgica.

Los cirujanos decidieron seccionar en primer lugar la parte posterior del cuerpo calloso. La sección de esta región desconecta la zona del sistema visual que por lo general transmite al cerebro izquierdo la imagen sensorial de un estímulo que se ha presentado al cerebro derecho. Por regla general, después de esta primera fase de la operación, los dos lóbulos occipitales ya no pueden comunicarse directamente entre sí su información sensorial primaria.

Cuando, inmediatamente después de la operación, se presentaban al cerebro derecho estímulos tales como palabras o dibujos, la respuesta que provocaban era de escasa precisión. En el caso de J. W., los estímulos presentados al cerebro derecho producían únicamente respuestas con un 28 por ciento de precisión. No obstante, con el tiempo los resultados mejoraron y J. W. pudo nombrar perfectamente los estímulos presentados al cerebro derecho. ¿Qué había pasado? ¿Se habían vuelto activas nuevas vías que permitían transferir información sensorial al cerebro izquierdo para su interpretación? ¿O eran las conexiones del cuerpo calloso que permanecían intactas las que transferían información procedente de otros módu-

los, de tal manera que el cerebro izquierdo podía inferir qué estímulo había sido presentado al cerebro derecho? Quizás todavía estaban conectados con el cerebro izquierdo módulos encargados de procesar determinados atributos del estímulo. Nuestro análisis sugiere que esta última interpretación es la correcta. Puedo poner un ejemplo concreto que ilustra las razones por las que creemos que esta interpretación es la buena.

Cuando se proyecta sobre el hemisferio derecho de un paciente normal la palabra «caballero», la información sensorial fundamental pasa al hemisferio izquierdo por medio de las neuronas del cuerpo calloso, y el hemisferio izquierdo, dominante en lo que respecta al lenguaje, puede nombrar el estímulo en cuestión. En el caso de J. W., que había sufrido la sección de la parte posterior del cuerpo calloso, no parece haber transferencia de la información básica del estímulo. En lugar de ello, el hemisferio izquierdo del paciente desarrolla una estrategia para tratar determinados aspectos cognitivos del estímulo que sí parecen transferirse. De este modo, el hemisferio izquierdo de J. W., el que tiene la capacidad de hablar, respondía diciendo: «Tengo una imagen en mi mente, pero no puedo decir de qué se trata. Dos luchadores en un círculo, son antiguos, llevan uniformes y cascos y van montados a caballo; se golpean. ¿Son caballeros?» El cerebro izquierdo obtiene fragmentos de información y entonces aventura una conjetura referente a cuál ha sido el estímulo.

Esta idea predice que, cuando se seccione la parte todavía intacta de las vías neurales que conectan el sistema cortical, ese fenómeno no debería producirse. Unas semanas más tarde, los cirujanos completaron el seccionamiento del sistema de fibras y J. W. perdió la capacidad de nombrar los estímulos presentados al cerebro derecho. Era como si los módulos independientes del cerebro decon los estímulos no pudieran acceder a los sistemas de fibras intercerebrales restantes.

Otro ejemplo de cómo la información se divide en fragmentos para el proceso de transferencia es el siguiente. Se proyectó sobre el hemisferio izquierdo un dibujo sencillo en blanco y negro de un semáforo. Mientras J. W. trataba de describir lo que veía, le pregunté: «¿Tiene algo que ver con los coches?»:

«Sí.»

«¿Tiene algo que ver con los colores?»

«Sí, rojo, amarillo, verde, ... ¿es un semáforo?»

Después, al seguir preguntándole, J. W. decía que había visto un semáforo en color, a pesar de que el dibujo que se le había presentado era en blanco y negro.

Creo que estos ejemplos aportan pruebas adicionales sobre la existencia de los módulos mentales, pruebas que demuestran que se trata de componentes reales del cerebro. Es importante advertir, sin embargo, que en cualquier experimento con un paciente hay que tener en cuenta el contexto. Como mencioné anteriormente, lo más probable es que J. W. posea capacidades singulares en su cerebro derecho. Es decir, que ahora sabemos que su cerebro derecho es uno de los pocos que puede procesar estímulos lingüísticos. Tiene una red semántica que aparece reflejada en una red neural, algunas de cuyas conexiones con el cerebro izquierdo permanecen a través de la parte no seccionada del cuerpo calloso. No obstante, en el paciente S. W., que fue sometido a una operación quirúrgica similar en dos etapas, no se observó ningún proceso de fraccionamiento después de seccionarle la mitad posterior del cuerpo calloso. Las palabras proyectadas su cerebro derecho no provocaban respuesta alguna.

Después de la sección completa del cuerpo calloso, demostró no poseer capacidad lingüística alguna en su hemisferio derecho.

Es evidente, por tanto, que la localización de algunos módulos varía de una persona a otra. Pero aunque este hecho es de enorme interés, no tiene por qué disuadirnos de tomar en cuenta los resultados obtenidos en estudios de casos individuales. Resultados como los obtenidos con J. W. permiten al experimentador observar un desacoplamiento funcional del sistema de procesamiento de la información y demuestran que tales desacoplamientos tienen una base anatómica. La modularidad cerebral no sólo es un concepto psicológico. Mediante estudios como éste, se pone de manifiesto que la modularidad tiene una auténtica base anatómica. Al mismo tiempo, sin embargo, los datos derivados de tales casos quirúrgico-patológicos no deben utilizarse para sostener que un caso particular aporta pistas sobre la organización normal del cerebro, es decir, sobre la localización normal de módulos específicos. Determinar la arquitectura cerebral puede requerir algún tiempo y muchos más casos. Se trata de un hecho muy importante que tendemos a minimizar.

En la continua búsqueda de la modularidad y su definición en términos de auténticos sistemas cerebrales, se ha producido recientemente un avance importante. En el campo de la medicina se ha creado un nuevo dispositivo para producir imágenes basado en el principio de la resonancia magnética nuclear (RMN). Las imágenes que puede producir la máquina RMN son deslumbrantes y proporcionan detalles muy precisos de la estructura anatómica. Además, puede revelar si la persona con el cerebro dividido lo tiene o no completamente separado. Durante 25 años he tenido que confiar en las notas quirúrgicas para saber hasta qué punto se había seccionado el cuerpo calloso. Actualmente lo podemos saber mediante una ima-

gen postoperatoria RMN. Hemos utilizado este procedimiento con tres de nuestros pacientes⁶.

En los casos de J. W. y P. S. la separación era completa. La imagen mostraba con toda claridad que se había seccionado todo el cuerpo calloso. Esta técnica de imágenes, que puede verificar los informes quirúrgicos, establece nuevos criterios para clasificar los casos de cerebro dividido, y también proporciona nuevas oportunidades de estudio. Considérese el caso de V. P.

La aplicación de las técnicas de RMN a V. P. mostró que el cirujano había dejado intactas inadvertidamente una parte muy pequeña del cuerpo calloso posterior y otra similar del anterior. Estas dos partes distan bastante entre sí y están implicadas en funciones diferentes (la región posterior se ocupa de funciones visuales). Con todo, V. P., al igual que J. W., no puede transferir información perceptiva. Podría parecer que no queda suficiente cuerpo calloso para facilitar tales procesos. De forma similar, se piensa que la parte anterior del cuerpo calloso está implicada en la transferencia de información semántica en casos de este tipo. No obstante, V. P. no puede juzgar si dos palabras, una presentada al cerebro izquierdo y otra al derecho, están relacionadas entre sí. Al menos eso es lo que parece a primera vista.

Hemos descubierto recientemente que los resultados pueden ser completamente diferentes si las palabras se escogen cuidadosamente y de forma sistemática. En las investigaciones de los doctores Marta Kutas y Steven Hillyard, de la Universidad de California en San Diego, se presentaba una serie de palabras mediante un taquistoscopio —una a cada mitad del cerebro— variándolas de la siguiente forma: algunas no se parecían ni visual ni acústicamente; otras se parecían visualmente pero no sonaban igual; otras sonaban igual pero no se parecían, y otras sonaban igual y se parecían. Después de ver cada par de pa-

labras, V. P. tenía que decir si las dos palabras estaban o no relacionadas. Si la respuesta de la paciente V.P. estuviera por encima de lo esperable por azar, eso significaría que las comisuras que todavía quedaban entre los dos hemisferios eran capaces de transmitir información crítica. Los resultados fueron fascinantes.

Tras aplicarle tres pruebas independientes, V. P. obtuvo unas puntuaciones superiores al nivel de azar en una sola condición experimental: cuando las palabras se parecían visualmente y sonaban igual. En cambio, fracasaba cuando las palabras únicamente se parecían en su forma, condición que podía favorecer el uso de las fibras de la parte posterior del cuerpo calloso, y también cuando sonaban igual, condición esta que favorecía el uso de las fibras de la parte anterior del cuerpo calloso. Unicamente cuando las palabras se parecían visual y acústicamente se transmitía información suficiente entre los dos hemisferios para poder hacer un juicio correcto.

Las dos regiones sin seccionar del cuerpo calloso de V. P. parecen suficientes para integrar la información de dos sistemas cuando trabajan al unísono y en paralelo. En suma, los diferentes módulos disponen de vías distintas, y éstas se combinan de tal forma que permiten dar respuestas correctas aun cuando V. P. no sea consciente ni de que ha acertado en algunos ensayos ni de que ha fallado en otros.

Otros muchos estudios apoyan la idea de que las estructuras cognitivas humanas están organizadas en módulos mentales. Pensemos en el caso de las imágenes mentales: la capacidad de producir la representación visual de un objeto o de una escena en el ojo de la mente. Por ejemplo, se le pide a una persona que imagine una manzana, y en su conciencia aparece una manzana hermosa y de aspecto delicioso. Es fácil pensar que este tipo de imágenes visuales, tan intensas y tan vívidas, podrían formar

parte del sistema visual del cerebro identificado mediante análisis neuropsicológicos y neuroanatómicos. Examinamos esta cuestión en pacientes con el cerebro dividido y, para sorpresa nuestra, no parecía que las cosas fueran como habíamos previsto. Me explico.

Hay un subgrupo de pacientes con la comisura seccionada que tienen separado cerebralmente el sentido del tacto pero no el de la vista; es decir, debido a la naturaleza de su operación, la información relativa al tacto no se transfiere entre las dos mitades cerebrales, pero sí la información visual. Por consiguiente, este tipo de pacientes puede nombrar un objeto situado en la mano derecha fuera de la vista, pero no uno situado en la mano izquierda, lo cual muestra el efecto táctil habitual que provoca la división del cerebro. La información táctil procedente de la mano derecha se proyecta en el cerebro izquierdo, y, como el sistema lingüístico de estos pacientes se encuentra en el cerebro izquierdo, pueden nombrar con facilidad los objetos colocados en su mano derecha. Pero la información táctil procedente de la mano izquierda va al cerebro derecho, y debido al seccionamiento del cuerpo calloso, la información queda aislada en el cerebro derecho de estos pacientes, sin llegar a aleanzar el hemisferio izquierdo, que la ignora.

Sin embargo, si el objeto se presenta visualmente en cualquiera de los campos de visión y, por tanto, la información se proyecta en cualquiera de las dos mitades del cerebro, estos pacientes pueden responder y describir el objeto presentado igual que una persona normal. Esto se debe a que las conexiones visuales entre las dos mitades cerebrales están intactas y pueden llevar a cabo su función normal. En vista de ello, cabría predecir que estos pacientes tendrían que ser capaces de realizar fácilmente el denominado emparejamiento visotáctil. Es decir, si un objeto, una manzana por ejemplo, se presenta visual-

mente a cualquiera de las mitades del cerebro, ambas manos tendrían que poder identificarlo utilizando únicamente el tacto. El sistema visual está intacto, por lo que transmite la imagen visual al cerebro opuesto. Esto quiere decir que cualquiera de las dos mitades del cerebro «ve» la imagen visual y, por lo tanto, tendría que poder dirigir la mano que tiene bajo su control para dar la respuesta correcta. De hecho, los pacientes realizan esta tarea con facilidad, según lo previsto.

La situación se manipula ahora para realizar un experimento singular⁷. Se coloca un objeto en la mano derecha del paciente y se le dice que no lo nombre en voz alta, sino que se forme una imagen mental del mismo. De esta forma, el paciente sostiene el objeto en su mano derecha y al cabo de un momento indica que ya tiene una imagen del mismo. Entonces le pido al paciente que encuentre con su mano izquierda el objeto con el que puede emparejarse el anterior. Esta sencilla tarea no puede realizarse sin la ayuda de instrucciones en forma de imágenes, dada la desconexión entre las dos mitades del cerebro en lo que respecta a la información táctil. Pero, como hemos dado al paciente instrucciones para que traduzca al dominio visual el objeto percibido táctilmente, y dado que el sistema visual del paciente está, como sabemos, perfectamente conectado, tendría que ser posible que la información pudiera transferirse a la otra mitad cerebral, en este caso al cerebro derecho, de manera que el paciente pudiera efectuar el emparejamiento correcto.

Después de pasar una y otra vez la prueba a distintos pacientes, no hemos sido capaces de encontrar signos de transferencia por medio de esos procedimientos. Este resultado indica que las imágenes visuales, tal como se producen en el caso de los humanos, no son una propiedad del sistema visual mismo, sino que se trata de cómputos que tienen lugar en algún otro lugar. Las imágenes men-

tales son otro aspecto de nuestra vida consciente que funciona en módulos específicos y, en este caso, podría parecer que el módulo que realiza la función está desconectado del cerebro derecho, ya que se mostró incapaz de colaborar en la solución de la tarea con la mano izquierda.

En los últimos años las ciencias cognitivas han prestado mucha atención al tema de las imágenes mentales. En los estudios que acabo de describir, he utilizado las imágenes mentales para investigar la cuestión de la modularidad cerebral. Con todo, muchos investigadores estudian las imágenes mentales por sí mismas. Yo quería saber más sobre este tema. Me interesaba mucho la típica cuestión que siempre plantean las personas interesadas en este área, a saber: ¿Son las imágenes mentales independientes del lenguaje y de la semántica? Se trata de una cuestión difícil de responder, pero que aborda el tema de la modularidad desde otro ángulo.

Una de las satisfacciones que te proporciona el encontrarte en un estadio avanzado de tu carrera estriba en que frecuentemente tienes ocasión de plantear a la persona más adecuada las cuestiones cuya respuesta deseas conocer. No hace mucho tiempo, mientras estaba paseando por la vereda de Airlie House, centro de conferencias en las afueras de Washington, me encontré con Herb Simon, científico cognitivo laureado con el Nobel y el hombre más modesto del mundo. Yo quería saber lo que pensaba sobre las imágenes mentales; si se trataba de algo real e independiente del pensamiento proposicional y, si era así, cuáles podían ser sus propiedades. Herb sonrió, se sentó en un tronco de árbol y durante los cuarenta minutos siguientes hizo un lúcido resumen del fenómeno en cuestión. En esencia, su respuesta consistió en plantearme un problema. Imagina, me dijo, un rectángulo. Traza una línea desde el ángulo superior derecho al ángulo inferior

izquierdo. A continuación, traza una línea desde la mitad de la diagonal hasta el ángulo inferior derecho. Después, traza una perpendicular desde la línea superior, desde un punto que esté aproximadamente a un tercio de distancia del ángulo superior derecho, hasta el borde inferior. ¿Cuántas líneas cruza esta última? Respondí que dos y me dijo que así era. Mi rapidez en dar la respuesta adecuada se debía a que había usado imágenes mentales. Utilizar un sistema para resolver difíciles proposiciones formales llevaría mucho tiempo.

Estaba entusiasmado con las imágenes mentales como tema de investigación, y le pregunté a mi buen amigo Edgar Zurif, que trabajaba en Boston, si podía presentarme a Steve Kosslyn, uno de los magos de la ciencia cognitiva que había contribuido más que ningún otro al establecimiento de las imágenes mentales como auténtico campo de estudio. Kosslyn posee una energía inagotable. Es una de esas personas que agota a sus amigos debido al ritmo incansable que mantiene. Conoce su tema como nadie, y cuando aborda un problema, lo ataca con un entusiasmo y un vigor revitalizantes. Nos reunimos para comer en Nueva York; le dije que quería introducir su tecnología y sus ideas cognitivas en el marco neurológico. La idea le encantó y así surgió una nueva colaboración.

Los primeros estudios de Kosslyn establecieron el fenómeno de las imágenes mentales como tema serio de investigación⁸. Veamos, por ejemplo, uno de sus experimentos, un ingenioso estudio que combina el uso de la medida del tiempo de reacción y los procesos de formación de imágenes. Kosslyn instruía a los sujetos para que pensasen en un perro, un chihuahua por ejemplo, y se imaginaran que estaban mirándole el hocico. Entonces les pedía que pulsaran un botón tan pronto como hubieran explorado todo el cuerpo del perro hasta llegar a la cola. La tarea les suponía por término medio un cierto tiempo.

Después les pedía a los sujetos que imaginasen otro tipo de perro, un perro tejonero por ejemplo, que es mayor que un chihuahua. Los sujetos tenían que explorar también todo el cuerpo, desde el hocico hasta la cola, y pulsar un botón. En este caso, los sujetos tardaban más tiempo en responder que con el chihuahua. Parece que el perro tejonero es siempre mayor, jincluso en el ojo de la mente!

Kosslyn siguió haciendo experimentos, cada vez más ingeniosos, y causando una auténtica conmoción en el ámbito de las imágenes mentales. Desde el comienzo de su trabajo, las críticas se centraban en el problema de si las imágenes serían o no un epifenómeno del sistema lingüístico. Como el sistema lingüístico sabe que los perros tejoneros son mayores que los chihuahuas, la respuesta en el caso de los tejoneros no se produciría hasta pasado un poco más de tiempo. Los experimentos ingeniosos generan críticas inteligentes. Así es la naturaleza de la buena ciencia, pero al final se impuso la posición de Kosslyn.

El primer experimento era sencillo9. Se proyecta una letra mayúscula, una A por ejemplo, sobre una de las mitades del cerebro. La tarea consiste en imaginar la misma letra, pero en minúscula, en el ojo de la mente, y a continuación decir si su forma impresa puede o no extenderse por encima o por debajo de una línea sobre la que está escrita. Así, una A daría lugar a una respuesta «negativa» debido a la forma de la misma en minúscula -a-, mientras que en el caso de la G el sujeto respondería «afirmativamente» debido a su forma en minúscula -g-. En una prueba como ésta, cada mitad del cerebro tiene que conocer, naturalmente, la forma de ambas versiones de la letra en cuestión. En las pruebas de control, se proyecta la letra mayúscula mientras el sujeto tiene a la vista una lista de las letras minúsculas, y su tarea consiste en señalar la correcta. A cada mitad del cerebro le resultaba fácil hacer esto, pero cuando se pidió a los sujetos que generaran una

imagen mental, únicamente el cerebro izquierdo podía juzgar si la versión en minúscula de la letra sobrepasaba o no la línea. El cerebro derecho de J. W. obtuvo unos resultados extremadamente pobres en la realización de esta tarea, a pesar de la capacidad lingüística del mismo y de la enorme habilidad que tenía para las pruebas de reconocimiento facial.

Este tipo de descubrimientos posee muchas dimensiones interesantes; entre ellas destaca la conclusión de que el cerebro izquierdo dispone de un módulo específico especializado en la producción de imágenes mentales. Esta capacidad no parece estar basada en el lenguaje, ya que el cerebro derecho de J. W. posee un léxico casi tan amplio como el que tiene el cerebro izquierdo. En resumen, un cerebro derecho que dispone de la capacidad lingüística pero no de la capacidad de hacer inferencias, tampoco puede producir imágenes mentales. Estamos ante un nuevo capítulo de la historia de la importancia que tienen los módulos independientes no lingüísticos en la elaboración de nuestro sentido global de la cognición individual.

¿Se trata de procesos inconscientes? En cierto sentido, sí. Se encuentran en todas partes. Al mismo tiempo, ahora es posible desmitificar el concepto de inconsciente y ver de qué modo pueden operacionalizarse y someterse a investigación científica las intuiciones del pasado. En mi esquema del funcionamiento del cerebro, la conciencia es el resultado del intérprete del cerebro izquierdo, y los productos de la misma son descritos y refinados por el sistema lingüístico humano. El intérprete invoca un número indeterminado de módulos distintos y relativamente independientes para informarse. Por consiguiente, la neurociencia cognitiva moderna está en situación de estudiar la totalidad del cerebro y el conjunto de sus procesos con la misma energía.

En el próximo capítulo voy a abandonar la esfera de la

ciencia del cerebro humano para pasar a examinar de qué modo los estudios sobre el cerebro pueden instruirnos acerca de los procesos psicológicos. El estudio del cerebro me interesa únicamente en la medida en que nos permite profundizar en nuestros yoes psicológicos. La fisiología del cerebro es interesante, pero no mucho más que la fisiología del riñón. ¡Es lo que hace el cerebro lo que resulta más interesante!

Capítulo 9 Aspectos psicológicos de la modularidad

Los prejuicios humanos son un fenómeno omnipresente. Todos tenemos opiniones preconcebidas sobre las cosas, y éstas forman una parte importante de nuestro sistema de creencias. En su mayor parte, representan el lado menos atractivo de las operaciones mentales que normalmente dan lugar a nuestras creencias personales. El prejuicio es un fenómeno tan ineludible del comportamiento humano que merece una explicación. La comprensión de los procesos mentales que dan origen a creencias tales como los prejuicios nos permitirá enlazar nuestra comprensión actual de los mecanismos cerebrales con lo que sabemos acerca de los procesos psicológicos.

En Suiza, lugar donde escribí estas líneas mientras vivía en un chalet alpino que daba a uno de los paisajes más idílicos del mundo, descubrí que incluso una de las más antiguas democracias tenía problemas debido a los prejuicios. Los suizos declaran públicamente que los 4 grupos étnicos que componen su república hablan len-

guas diferentes —italiano, francés, alemán y romanche y viven en armonía debido a sus ideales democráticos. El país es realmente perfecto: los trenes funcionan con puntualidad, la comida es buena, sus vinos baratos son mejores que los de California y el paisaje es incomparable. Aparentemente, reina la armonía y la democracia funciona. Esto es lo que dicen los suizos, y todo parece ser cierto hasta que vives allí un par de meses.

En realidad, los francosuizos apenas hablan con los germanosuizos o con los suizos italianos. Los prejuicios están hondamente arraigados y la democracia funciona porque, de hecho, hay poca interacción entre los grupos étnicos. La comprensión interpersonal del suizo medio tiende a no extenderse más allá de su cantón. La gente que vive en un cantón pertenece al mismo grupo étnico, y estas civilizadas personas tienen profundos prejuicios sobre sus vecinos.

Todos tenemos creencias extrañas: los blancos sobre los negros, los negros sobre los blancos, los judíos sobre los árabes, los árabes sobre los judíos y así sucesivamente. Todos estamos llenos de prejuicios, de creencias sociales sobre las que depositamos un valor continuamente cambiante. A veces estamos profundamente comprometidos desde el punto de vista emocional con ciertas ideas, y otras veces nos sentimos menos identificados con ciertas opiniones. ¿Qué es lo que pasa? ¿Cuál es el mecanismo por medio del cual nuestros prejuicios, que forman parte de nuestro sistema de creencias, son manipulados por los acontecimientos de la vida?

A la hora de abordar los prejuicios como ejemplo de creencia humana, es conveniente dividir el problema en dos procesos relacionados entre sí. En primer lugar, es importante tener en cuenta de qué modo se forma inicialmente una creencia preconcebida. En segundo lugar, y esto es lo más importante, es interesante comprender el

mecanismo mediante el cual dicho prejuicio llega a arraigarse mucho más profundamente o es desechado. Ambos procesos hacen uso de las propiedades especiales del cerebro humano que he descrito anteriormente.

Uno de los mecanismos principales que interviene en la formación de los prejuicios humanos procede de la incesante capacidad del cerebro izquierdo para hacer inferencias y, de ese modo, atribuir causas a los acontecimientos de la vida. Cuando estos procesos dan lugar a un prejuicio, estamos ante un buen ejemplo del modo como la mente humana puede aplicar inadecuadamente sus dotes y capacidades especiales.

Consideremos el siguiente problema. Usted es una persona de color azul que vive en su medio y que no deja de pensar en sus problemas. Aparece una persona de color verde que comienza a disputarle su espacio. Es casi imposible no atribuir algunos de sus problemas a esta otra persona tan fácilmente identificable. De este modo puede comenzar el prejuicio. Cuando las diferencias entre los grupos sociales son evidentes, ya se deba al color, a la religión, a la lengua o a la nacionalidad, la reacción que se produce es directa, encrespada y generalizada. Cuando este tipo de señales no son tan evidentes, como, por ejemplo, ocurre en la Italia actual, que constituye una de las culturas más homogéneas del mundo, el sistema de prejuicios fundado en inferencias la emprende con otras diferencias más sutiles, tales como si la persona en cuestión es originaria o no de alguna región o ciudad determinada.

Desde luego, hay muchísimas otras formas de adquirir creencias preconcebidas. Pueden aprenderse en el regazo materno, en las calles, a partir de los medios de comunicación o de cualquier otra fuente de información. Tratar de persuadir a los demás de nuestras opiniones es algo intrínseco en la naturaleza de nuestra especie. En consecuencia, nos vemos continuamente asediados por

puntos de vista listos para ser adoptados. Lo más importante es el mecanismo psicológico mediante el cual se valora más o menos cada una de estas creencias adquiridas, independientemente del modo como se introdujeran inicialmente en nuestro sistema global de creencias.

Para explicar de qué modo arraigan o desaparecen los prejuicios humanos, voy a echar mano de nuevo de la teoría de la disonancia cognitiva creada por Festinger y descrita en el capítulo 5. La teoría de Festinger se adapta y se corresponde directamente con el modelo de funcionamiento cerebral que yo he propuesto. Recordemos que, según la teoría de Festinger, cuando entran en conflicto una creencia y un comportamiento, o bien tiene que cambiar la creencia para adecuarse al comportamiento, o bien es el comportamiento el que debe cambiar para ajustarse a la creencia. Por lo general, es la creencia la que cambia. Examinemos uno de los ejemplos clásicos estudiados por un colega de Festinger, Judson Mills. Versa sobre el problema de la mentira.

Muchas creencias, sobre todo las que hemos adquirido al principio de nuestra vida, se han impuesto por rutina. Por ejemplo, cuando somos jóvenes podemos repetir las máximas que nos han enseñado nuestras madres. Mentir es malo, la limpieza es buena. Lo que pasa durante el curso de nuestra vida es que o bien estas opiniones arraigan profundamente o bien se descartan.

En un experimento, se pidió a un grupo de estudiantes que hicieran una estimación de lo que pensaban sobre la mentira. Algunos la consideraban algo muy malo; otros no pensaban que fuese para tanto. A continuación, se les puso un examen que tenían que hacer bien. Los experimentadores habían organizado el examen de tal manera que era fácil mentir sin ser cogido. Los estudiantes no sabían que su comportamiento estaba siendo minuciosamente controlado por psicólogos. No fue una sorpresa

descubrir que algunas de las personas que pensaban que mentir era malo mintieran, y otras que pensaban que no era tan malo también mintieran. Después de la prueba, se pidió de nuevo a los estudiantes que hicieran una estimación de sus ideas sobre la mentira.

Los resultados fueron claros. De los que inicialmente pensaban que mentir era malo, quienes mintieron en el examen pensaban ahora que mentir no era tan malo, mientras que los que no mintieron ahora pensaban que mentir estaba realmente mal. Los valores del otro grupo se vieron manipulados de forma similar. De los que inicialmente pensaban que mentir no era tan malo, aquellos que mintieron siguieron pensando que no era tan malo, y aquellos que no mintieron pensaban ahora que mentir era malo.

En este experimento se pone de manifiesto cómo puede manipularse sistemáticamente el valor de una creencia haciendo que un comportamiento entre en conflicto con una creencia. El organismo no tolera ese estado de disonancia. No obstante, lo que nunca ha estado claro en la teoría de la disonancia es la razón por la cual el organismo lleva a cabo una conducta que está en contradicción con sus creencias. ¿Por qué se desarrollan los conflictos? La respuesta está en nuestras investigaciones sobre el cerebro. Mi idea es que la explicación radica en el hecho de que nuestros cerebros estén organizados en módulos independientes, cada uno capaz de actuar y realizar actividades que ponen a prueba una y otra vez las creencias mantenidas por los sistemas lingüísticos y cognitivos del cerebro izquierdo. El conflicto lo ocasiona un módulo mental que provoca un comportamiento, un módulo que puede funcionar independientemente del sistema lingüístico dominante de la mitad izquierda del cerebro.

Esta formulación tiene otros aspectos de interés. Una consecuencia del hecho de que el cerebro esté organizado

de la forma que propongo es que permite que nuestras creencias se sometan a prueba constantemente. Un ser humano sensible y con curiosidad puede tener más posibilidades de reevaluar constantemente sus creencias que otro sedentario y pasivo. Si el cerebro fuera un sistema monolítico en el que todos los módulos pudieran comunicarse internamente, entonces el valor asignado a nuestras creencias nunca cambiaría. La cultura humana estaría abocada a repetir de forma refleja las mismas salmodias de las generaciones precedentes. De este modo, el duelo incesante entre cognición y comportamiento, tan importante en la formación de nuestras creencias, aparece como una característica muy especial de nuestra especie.

La teoría de la disonancia cognitiva se propuso hace más de 25 años y ha resistido la prueba del tiempo, salvo ligeras modificaciones, salvedades e incluso algunas denuncias. Se trata de un poderoso proceso psicológico que forma parte de todos nosotros. Los avances de la investigación sobre el cerebro no sólo acentúan su validez, sino que además indican que el ser humano tendría pocas oportunidades de poner en práctica un mecanismo de control alternativo a la hora de comportarse. El organismo se afana por conseguir que haya coherencia entre las creencias que articula y las acciones que realiza. El cerebro interpretativo dominante, que suele ser el izquierdo, trata de poner orden y coherencia en sus módulos mentales, su sustancia mental.

Un segundo aspecto importante de la teoría de la disonancia que hay que respetar siempre con el fin de mantener su efectividad es que la gente tenga la posibilidad de involucrarse libremente en el comportamiento presuntamente disonante con una creencia previa. La mayor parte de las observaciones que pretenden socavar la teoría de la disonancia tiene graves defectos, ya que excluyen la libre elección, o, para ser exactos, la ilusión de la libre elección, como una condición más del experimento. Si uno se ve obligado a cometer un crimen a punta de pistola, no tiene nada de sorprendente que no se modifiquen sus creencias previas en la ley y el orden. Pero si uno es inducido con escasa presión externa a cometer su primer delito, es muy probable que la actitud acerca de esta clase de comportamiento cambie y no se considere tan deplorable.

El primer trabajo que puso de manifiesto la existencia de estas relaciones lo llevaron a cabo Festinger y su colega Merrill Carlsmith. Otros investigadores continuaron este trabajo, entre ellos Arthur Cohen, de Yale, quien demostró que, cuando no hay justificación externa suficiente para embarcarse en lo que los investigadores denominan «comportamiento contra-actitudinal», se producía el máximo estado de disonancia y, por lo tanto, un mayor cambio de actitud. En el experimento de Cohen, se les pidió a unos estudiantes de Yale que escribieran un ensayo sobre las actuaciones de la policía de New Haven. Todos los estudiantes desaprobaron con firmeza el comportamiento de los policías al sofocar un motín estudiantil. Pensaban que la policía se había comportado con extraordinaria brutalidad. Se asignó a los estudiantes a 4 grupos, a cada uno de los cuales se les pagó respectivamente 10 dólares, 5 dólares, 1 dólar y, por último, 50 centavos por el escrito. Una vez escrito el ensayo, se midió la actitud de cada grupo hacia la policía. Los resultados fueron inequívocos. Los estudiantes del grupo que había recibido menos dinero (justificación externa de sus acciones) fueron los más positivos en su actitud, mientras que los otros grupos cambiaron poco sus opiniones, y el grupo que recibió 10 dólares apenas cambió nada.

Los experimentos de este tipo demuestran la existencia de un parámetro clave para manipular eficazmente las creencias. Según muestran estos estudios, para que un comportamiento tenga fuerza suficiente para provocar un

cambio de creencias, tiene que percibirse como producto del libre albedrío. Los comportamientos que pueden justificarse fácilmente como debidos a fuerzas externas no requieren un proceso de reducción de la disonancia y, por consiguiente, el sistema de creencias no se ve amenazado.

Otro ejemplo relacionado con la importancia de las acciones percibidas como producto del libre albedrío procede de un área de investigación psicológica denominada «motivación intrínseca». Se trata de la motivación que se desarrolla cuando realizamos conductas percibidas más o menos como producto del libre albedrío. Un experimento típico es el siguiente. Se entrena a unos niños para que aprendan información nueva o para que realicen una tarea concreta que requiere un auténtico esfuerzo. Un grupo de niños aprende bajo estrictos procedimientos conductistas, recibiendo sistemáticamente refuerzos con efectos apropiados sobre la adquisición de la información, de tal forma que reciben más refuerzos cuanto más eficazmente adquieren la información. Otro grupo de niños tiene que hacer la misma tarea siguiendo el mismo tipo de instrucciones, pero no reciben recompensas por sus esfuerzos según este método simplista de quid pro quo. Este grupo también aprendía la tarea.

Una vez finalizadas las lecciones formales, los experimentadores registran la frecuencia con que los niños hacían uso voluntariamente de su nueva habilidad. Por lo general, los resultados son inequívocos. Los niños que aprenden la habilidad con refuerzos externos apenas la usan, mientras que los otros niños siguen disfrutando de ella. Este tipo de experimentos se interpreta en el sentido de que los niños entrenados con refuerzos consideran el nuevo comportamiento como algo que hay que hacer únicamente para ser recompensado. Si el profesor reintroduce la condición de refuerzo, entonces aparecerá el comportamiento en cuestión. Sin embargo, sin esa condi-

ción, los niños prescinden de su nueva habilidad hasta que vuelva a haber refuerzos. En resumen, los niños no han asignado un valor intrínseco a la habilidad misma. Como no percibían la habilidad como algo en lo que tomaban parte libremente, ésta no llegó a formar parte de sus creencias personales.

La cuestión de la libertad es crucial en este tipo de investigaciones centradas en la manera en que se forman nuestras motivaciones y acciones, y plantea la cuestión de cuál es el significado del concepto de libre albedrío en nuestro mundo científico moderno. Vivimos en una época en la que la mayoría de las personas instruidas aceptan la opinión de que todos los acontecimientos tienen sus antecedentes causales y, desde el punto de vista intelectual, interpretamos el mundo en términos mecanicistas. Si esto es así, ¿por qué es tan importante el parámetro psicológico del libre albedrío? ¿Por qué el concepto de libre albedrío, aparentemente una reliquia del pasado, es tan esencial en el proceso de cambio de nuestras creencias personales?

El estudio más directo e importante de la cuestión del libre albedrío como constructor de un mundo científico y reduccionista ha sido realizado por el inglés Donald M. Mackay. Mackay rechaza la idea de que el hombre no tenga libertad de elección. Su argumentación contrasta con la mayor parte de las suposicones actuales, y sostiene con firmeza que nuestra especie es personalmente responsable de sus acciones, que realmente existe el libre albedrío. En su conferencia *Eddington*, pronunciada en 1967, plantea el problema y expone una solución. Se trata de la principal aportación realizada sobre esta cuestión desde un punto de vista lógico, y como tal merece la pena describirla con cierto detalle.

Mackay, físico, neurocientífico, filósofo y teólogo en sus ratos libres, acepta la noción de que el mundo es «me-

cánico en el sentido de un mecanismo de relojería», por expresarlo en sus propias palabras. La suposición operativa de los científicos es que las cosas existen y se producen debido a una serie ordenada de acontecimientos que han sucedido previamente y que determinan el acontecimiento o la acción objeto de estudio. Mientras el reto de la mayor parte de la actividad científica sea especificar esos estados previos, no se pone en duda que sean identificables. Aunque, desde luego, eso no siempre es cierto. En los niveles atómico y molecular, se producen fenómenos que algunos piensan que no son cognoscibles teóricamente debido a los problemas introducidos al intentar medirlos. Estos problemas, que entran dentro del ámbito de la teoría cuántica y de la mecánica estadística, no tienen que preocuparnos y puede que no tengan que ver con los procesos biológicos. Mackay establece que para defender el libre albedrío no es necesario oponerse al concepto del universo mecánico. Mackay desarrolla la idea de la «indeterminación lógica», una característica especial de una máquina de procesamiento de información, como el cerebro humano, que incorpora un agente cognitivo. Su argumento puede plantearse de la siguiente forma.

Un científico del cerebro me dice que mi esposa comerá un plato de cereales exactamente a las 7 en punto de la mañana. Según él, lo sabe porque tiene un registro completo de la actividad celular del cerebro de mi mujer, y sus células están programadas de tal manera que realizará esa acción a las 7. El científico y yo mismo nos acercamos de puntillas a mi casa y a las 7 vemos que mi mujer empieza a comer un plato de cereales.

«¿Ves?», dice el supercientífico del cerebro con sus registros eléctricos en la mano, «puedo predecir todo su comportamiento. Ella cree que actúa libremente, pero no es así. Si supiera que todo está organizado de antemano y es inevitable...» ¿Es cierto esto? No, según el análisis de

Mackay. Aunque la acción de mi esposa era predecible para nosotros, no era inevitable para ella. Si alguien hubiera dicho a mi mujer, «puedo predecir que a las 7 vas a comer un plato de cereales», nada habría impedido que ella dijera: «No, no lo voy a hacer.»

El científico del cerebro replica: «Eso no invalida mi manera de considerar el problema. Todo lo que tengo que hacer es tener en cuenta lo que ella dice para que mi predicción se mantenga.» Es en este punto en el que Mackay considera que se impone su argumento; para entenderlo hay que comprender la distinción entre algo que es predecible y algo que es inevitable.

Para probar que el futuro estado de mi mujer es inevitable para ella, el científico del cerebro tendría que demostrar que dicho estado tiene ya una especificación (y sólo una), que si ella aceptase, estaría en lo cierto, pero si la rechazase, estaría equivocada, con tal de que la conociese. Esto es manifiestamente imposible si la especificación indica implícitamente si ella la acepta o no. Si el científico del cerebro no revela su predicción a mi mujer, puede hacer una predicción válida para él mismo y quizás para el resto del mundo, pero, por mucho que ajuste sus cálculos, no puede elaborar una especificación completa que sea igualmente precisa tanto si mi mujer la cree como si no, de manera que la predicción sea inevitable para ella. Ninguna predicción de este tipo puede alcanzar el estatus de «verdad universal». Esto quiere decir que hay una «indeterminación lógica» respecto a los estados futuros de los cerebros de las personas; y es este hecho el que hace posible el concepto de libre albedrío. Mackay puede sentirse feliz por haber haber articulado este modo de enfocar el problema porque, como yo digo, cuenta con el beneficio añadido de hacer a los humanos personalmente responsables de sus acciones. Es un análisis sumamente ingenioso.

El análisis de Mackay, en gran parte aceptado por la comunidad filosófica como algo ineludible, acepta tácitamente la suposición de la civilización occidental de que la conciencia personal es el producto de un sistema cognitivo unificado y que la acción humana es el producto de un sistema cerebral monolítico. No obstante, la formulación podría adaptarse fácilmente a la noción de módulos mentales independientes, cada uno de los cuales podría realizar acciones y producir respuestas. Su argumento no pierde eficacia con el modelo del cerebro propuesto en este libro, aunque no lo tenga en cuenta explícitamente. Su análisis de la «indeterminación lógica» podría aplicarse a cualquiera de los módulos mentales del cerebro.

Aunque el argumento de Mackay parece asentar el concepto de libre albedrío en una sólida base científica, permitiendo, por tanto, que se considere como una variable en los estudios psicológicos, su análisis carece de la realidad psicológica que yo busco. Ya que, si bien el análisis de Mackay aborda la dimensión filosófica del problema de la «libertad de acción» en un universo mecanicista, no trata la cuestión relativa a las razones por las que los comportamientos realizados por uno mismo tienen un efecto sobre las creencias personales mientras que las órdenes impuestas desde el exterior no lo tienen. La respuesta está en alguna parte: en mi opinión en el hecho de que los humanos -con independencia de su nivel intelectual y las demás creencias que posean-creen inquebrantablemente que actúan libremente en el noventa y nueve por ciento de sus comportamientos. La puntualización racional de que, por lo general, no es así carece en absoluto de realidad psicológica. Nuestra experiencia inmediata está demasiado intensamente presente en nuestra mente, y no podemos prescindir de ella por la simple afirmación contenida en un libro de texto. Como consecuencia de esta percepción apabullante, un comportamiento

iniciado por un módulo mental tiene que ser justificado por el sistema de creencias de la persona, ya que no es posible atribuírselo a otra cabeza. En cambio, un comportamiento inducido por métodos externos siempre es posible atribuírselo a muchos chivos expiatorios.

Volvamos a un ejemplo clínico que contribuye a demostrar el poder que poseemos de explicar las actividades realizadas por nosotros mismos y la necesidad que tenemos de hacerlo. J. W., nuestro paciente con el cerebro dividido, es inteligente y despierto. Cuando lo colocába-mos en el tipo de situación experimental descrita en el capítulo 5, en la que tanto el cerebro izquierdo como el derecho tenían que realizar una tarea sencilla, el cerebro izquierdo, como recordarán, explicaba las razones de las elecciones hechas por cada mano. Nos decía exactamente las razones por las que la mano derecha señalaba la tarjeta que estaba tocando y luego construía una teoría sobre las razones por las que la mano izquierda respondía de la forma que lo hacía. Después de algunos ensayos, J. W. solía inquietarse. La respuesta dada por el cerebro izquierdo está en contradicción con lo que sabe el cerebro derecho. El cerebro derecho sabe por qué la mano señala una tarjeta determinada, y no le pasa desapercibida la historia que cuenta el cerebro izquierdo. El cerebro derecho deja constancia de su desaprobación mediante una respuesta emocional. El paciente se siente inquieto y los experimentadores interrumpen los ensayos.

A J. W. se le explica de nuevo la naturaleza de su operación, diciéndole que su cerebro derecho ha sido desconectado del izquierdo, que en ocasiones su mano izquierda puede hacer algo que su cerebro izquierdo difícilmente puede explicar debido a que la mano sigue las órdenes del hemisferio derecho. J. W. replica: «Ah, ya entiendo. Pienso explicar el comportamiento de mi mano izquierda a mi chica el próximo sábado por la noche: 'lo

siento, querida, ya sabes que tengo un cerebro derecho y un cerebro izquierdo, y ...'» Nos echamos a reír y la prueba continúa después de haberle proporcionado un modelo explicativo. A pesar de todo, en el siguiente ensayo podemos observar que J. W. recae irremisiblemente en el proceso en que el cerebro izquierdo trata de explicar las acciones de la mano izquierda. Se tiene la sensación de que su mano izquierda hace algo y necesita darle una explicación. Explicar el comportamiento realizado por uno mismo es algo esencial. Y, naturalmente, utilizo la expresión «realizado por uno mismo» en su significado más especial.

La ilusión de que poseemos libertad de acción, de que tenemos libre albedrío desde el punto de vista psicológico, puede ser la consecuencia directa de la manera en que nuestros cerebros están construidos. Un sistema cognitivo monolítico y completamente integrado que conozca la razón de cualquier comportamiento antes de producirse, que siempre actúe a partir de una serie de reglas examinadas con antelación, podría no sólo abrigar la idea de que el mundo es tan mecánico como un reloj, sino que él mismo no sería más que una mera pieza en el engranaje de ese universo fijo. En consecuencia, la ilusión del libre albedrío, es decir, de hacer las cosas libremente, desaparecería. De este modo, la mente humana dispondría de un chivo expiatorio perpetuo por lo que respecta a las razones de su comportamiento, y la consecuencia de todo ello sería que nuestras creencias nunca cambiarían a consecuencia de la experiencia. Seríamos esclavos de nuestro pasado, de lo que se nos hubiese enseñado.

Un sistema cognitivo compuesto de módulos mentales, cada uno de los cuales pudiera actuar independientemente del otro pero formando todos juntos una federación mental, podría asignar muy probablemente a un sistema cognitivo la tarea de establecer y mantener una teoría sobre las acciones de la federación. Parte esencial e ineludible de ese proceso sería el concepto de que el organismo actúa libremente, que de hecho el organismo es gobernable. Si no estuviera presente el concepto de libre albedrío, entonces los seres humanos tendrían la apabullante sensación de que su vida mental es un caos, un producto del azar, y que nada podría explicarse, especialmente el comportamiento inconsecuente.

Hasta ahora he abogado por la existencia de procesos psicológicos que toman parte en la formación de creencias y en la asignación de valor a las mismas. Los conceptos analizados derivan del trabajo experimental, de la ciencia del laboratorio. El laboratorio es mi hábitat natural, un hábitat que, a la larga, puede suministrar respuestas válidas a las cuestiones relativas a los mecanismos que subyacen al comportamiento humano.

Capítulo 10 Los confines del contexto humano: apuntes desde la prehistoria

Sólo soy capaz de trabajar de continuo en un determinado tema si intercalo pausas interesantes. Si éstas no se producen de forma espontánea, yo mismo las hago. Alrededor de 1980 empecé a sentir esta inquietud y, esta vez, mi nueva afición me la proporcionó Leon Festinger. Festinger se había interesado por la arqueología, y cuando él se interesa por algo, no se sabe muy bien cómo pero uno se encuentra conversando con él sobre este nuevo tema en lugar de sobre los problemas que nos habían interesado a ambos la semana anterior. Cuando Festinger decide cambiar su esfera de actividades, lo hace, y siempre resulta interesante para los que estamos cerca de él.

Conforme el año seguía su curso, el tema se hacía cada vez más interesante. Festinger recibió una pequeña ayuda de la Sloan Foundation para dedicarse a sus nuevos intereses. Viajamos juntos hasta ciertos enclaves arqueológicos, hablamos de nuestros descubrimientos y, a la postre, mantuvimos opiniones diferentes sobre lo que ha-

bíamos aprendido. Yo buscaba algo que me fuera útil para el problema de la singularidad de nuestros cerebros. Festinger estudiaba los restos arqueológicos de los primeros humanos porque era una oportunidad para examinar las causas originarias; era una época de la historia humana en la que las cosas ocurrían muy lentamente. En tiempos más recientes el registro histórico no es tan útil para determinar las relaciones causales, porque cualquier idea nueva se transmite al instante a través de la cultura mundial. En la prehistoria disponemos de una especie de método de laboratorio para examinar, a cámara lenta, las etapas de la evolución humana, los efectos de las ideas nuevas sobre la cultura o, en mi caso, los posibles cambios cerebrales que se correlacionan con los principales avances del conocimiento humano.

Estudiando la prehistoria, también es posible buscar datos o pistas de universales primitivos que no sólo podrían arrojar luz sobre la búsqueda de variables culturales o cerebrales que expliquen la cultura humana, sino también posiblemente sobre la aparición de los mecanismos cerebrales responsables de las capacidades especializadas del cerebro izquierdo. Nuestra cámara lenta hizo algunas observaciones interesantes.

Pensemos en un grupo de Homo erectus sentados en torno a la hoguera en la Costa Azul francesa, uno de sus lugares favoritos. Durante todo el día han estado cazando o recolectando; quizás algunos hayan estado fabricando herramientas primitivas tales como las que existían hace un millón de años. El Homo erectus carecía de otras opciones de comportamiento, debido principalmente al entorno cultural en que se movía. Destaco el medio cultural porque el medio físico estaba sumamente diferenciado. Con todo, los datos existentes me llevan a pensar que el Homo erectus era incapaz de aprovechar nuevas oportunidades de forma generalizada. En contra de lo que se

suele decir, me da la impresión de que estos primeros humanos no fueron demasiado lejos en sus logros. Por consiguiente, su cultura era completamente unidimensional. La pobreza de su rendimiento se debió, en mi opinión, a que el cerebro del *Homo erectus* todavía no era capaz de embarcarse con facilidad en el tipo de inferencias que hemos descrito. De manera que no se había dado el primer paso necesario para la formación de creencias, lo cual indica que la especie todavía no era capaz de trascender la relación refleja y cerrada que mantenía con las condiciones ambientales. A consecuencia de ello, aún no poseía el poder de realizar más que operaciones elementales sobre el medio.

El Homo erectus, que es la especie que precedió al hombre de Neanderthal (la subespecie europea anterior al hombre moderno), era sumamente lento a la hora de introducir cambios en los productos que fabricaba. El registro histórico que confirma este punto de vista consiste en pruebas relativas al uso de las herramientas de piedra. Si bien el Homo erectus es digno de consideración por haber sido la especie que desarrolló en serio ese proceso, durante un millón de años sus productos fueron extraordinariamente monótonos: adviértase que se trata de un millón de años, que se dice pronto. La calidad, la variación y el estilo apenas cambiaron desde los comienzos de la especie, hace un millón y medio de años, hasta su desaparición hace aproximadamente entre 100.000 y 300.000 años.

Sin embargo, aunque fuese poco imaginativo, el comportamiento del *Homo erectus*, junto con otras importantes aportaciones que hizo a la historia de la humanidad, debe examinarse con detenimiento. El *Homo erectus* aprendió a desplazarse y a protegerse del frío. Este primer humano no sólo se estableció en el sur de Francia, sino que habitó en el norte de Africa y en las regiones del

sureste asiático. En conjunto, estaba empezando a manifestarse la inventiva de nuestro género. Al extenderse por hábitats para los que no estaba especialmente adaptado, el Homo erectus desplegó singulares dosis de ingenio. Nuestros antepasados estaban empezando a dar muestras de que podían controlar el medio para su provecho personal. El desarrollo de excelentes habilidades de caza y recolección, así como el uso inteligente del fuego, son indicios de que el Homo erectus había dado un gran salto hacia adelante en relación con su antecesor, el Homo habilis.

La historia del *Homo erectus*, por tanto, tiene dos caras. Por una parte, su vida tenía todos los rasgos de la regularidad y la monotonía, pero, por otra, ya mostraba un rechazo evidente a que el medio gobernase completamente su comportamiento. Los homínidos se afanaban por conseguir el control. La causa de que no pudiese ir más allá, de que experimentara lo que podría denominarse una «meseta cognitiva» prolongada y relativamente estable, es fácil de identificar: en mi opinión, radica en ciertas características de su cerebro. Antes de describir los cambios cerebrales que tuvieron lugar, consideremos el caso del hombre de Neanderthal.

El hombre de Neanderthal tenía un cerebro mucho mayor que el Homo erectus, lo que suele considerarse como algo muy importante. La verdad es que disponía de un cerebro mayor que el del hombre moderno. Los que piensan que el tamaño del cerebro es importante en la evolución humana podrían afirmar, como hace el profesor de la Universidad de California en Irvine, Gary Lynch, que el hombre de Neanderthal era más «inteligente» que el hombre moderno¹. Si tenemos en cuenta el gran número de procesos humanos que originó el hombre de Neanderthal, la afirmación tiene algún sentido. Una vez creados sus avances culturales y sus invenciones

tecnológicas, podría sostenerse que la especie se estabilizó, limitándose a aplicar modos de comportamiento más simples que no requerían tanta capacidad cerebral como la que el doctor Lynch afirma que poseía el hombre de Neanderthal.

En cualquier caso, el hombre de Neanderthal, que tuvo una existencia de unos 90.000 años, introdujo vida y alegría en la monótona cultura del *Homo erectus*. Con la llegada del hombre de Neanderthal, las herramientas se hicieron más sofisticadas y también más bellas desde el punto de vista estético. Se fabricaban determinadas herramientas a partir de tipos concretos de piedra. Se inventó el martillo blando, fabricado con astas de ciervo, para dar forma a las herramientas de piedra. La habilidad desplegada para fabricar estas herramientas era enorme, según la descripción que nos hizo Jacques Tixier, uno de los mayores expertos del mundo en la industria lítica, durante una visita que hicimos a su laboratorio².

Leon y yo tuvimos el placer de observar al doctor Tixier fabricando algunas herramientas³. Este extraordinario y encantador arqueólogo dispone de un completísimo laboratorio justo a las afueras de Antibes, donde se dedica al estudio de la fabricación de herramientas prehistóricas y enseña a estudiantes licenciados este arte tan poco común. Se trata de un arte difícil de adquirir, y que me hizo dudar de mi propia destreza. Tixier logró tranquilizarme diciéndome que aprender a fabricar las herramientas de piedra del hombre de Neanderthal supone muchos años de práctica y de duro trabajo.

Lo que más nos impresionó de la experiencia fue la descripción que iba haciendo Tixier a medida que trabajaba. Para fabricar herramientas de piedra había que hacer una serie enorme de maniobras y tomar otras tantas decisiones: la posición de la piedra que hacía de plataforma de apoyo y el ángulo de incidencia del martillo (otra piedra)

son dos ejemplos. De pronto se nos ocurrió que el aumento más o menos exponencial en la calidad de las herramientas fabricadas por el hombre de Neanderthal podía reflejar la presencia de un lenguaje comunicativo. Esto querría decir que por fin nuestra especie disponía de las áreas cerebrales especiales de las que dependen dichos procesos y que, como hemos puesto de manifiesto, están estrechamentente asociadas a la capacidad inferencial. El impacto de este avance sería enorme. Con el advenimiento de las nuevas capacidades cerebrales, las técnicas más refinadas de un fabricante de herramientas podían comunicarse a otro y, con los años, mezclarse unas con otras y dar lugar a una mayor habilidad para fabricar herramientas mejores. Le pregunté a Tixier si había intentado alguna vez enseñar a alguien esas habilidades sin uti-lizar instrucciones verbales. No lo había hecho y se estremeció al pensar lo prolongado que podría resultar tal proceso.

Además de la expansión de la tecnología de las herramientas como indicio de un cambio fundamental en los procesos cerebrales, hay toda otra serie fascinante de avances simultáneos. El hombre de Neanderthal aprendió a utilizar el agua y comenzó a navegar. Es probable que emigrase de hogares de invierno a hogares estivales. 'Esto por sí mismo hace pensar en la aparición de un sistema de mapas mentales, proceso que requiere la presencia de áreas cerebrales específicas. El hombre de Neanderthal comenzó a adornarse, lo que hace pensar en la aparición de un sentido de la estética. Ciertas características de las herramientas, por ejemplo, adoptaron una dimensión estética que no era necesaria y que iba más allá de cualquier valor utilitario. Por último, el hombre de Neanderthal comenzó a dar muestras de la presencia de creencias, la característica sine qua non de un cerebro con lenguaje. Se han descubierto tumbas, y la disposi-

ción de los huesos en ellas ha sido interpretada por algunos investigadores como prueba de la existencia de algún tipo de creencias. El hombre de Neanderthal es un Homo sapiens arcaico que se encuentra un escalón por debajo del Homo sapiens sapiens y los velocísimos acontecimientos que tuvieron lugar con el hombre moderno. Dado que no podemos trazar una progresión ascendente y uniforme de los logros humanos en función del paso real del tiempo, la cuestión que se plantea es: ¿A qué se pueden atribuir los cambios? Hay dos formas fundamentales de abordar este problema. La primera puede denominarse «perspectiva ascendente», también conocida a veces como «perspectiva sociobiológica». La segunda es la perspectiva descendente, es decir, la noción de que las cosas no empiezan hasta que se produce un cambio cerebral.

Según la perspectiva ascendente, el organismo dispone de una serie de capacidades de respuesta controladas genéticamente, las cuales pueden ser seleccionadas y conformadas por el hábitat del organismo4. Con esta perspectiva, surgida de un inmenso número de brillantes y minuciosos estudios sobre animales que tratan de la compleja organización social de varias especies, tales como las hormigas, los lobos y los mandriles, pueden explicarse de forma ingeniosa las complejidades sociales de su comportamiento. Estos animales viven en una relación dinámica y en gran medida recíproca con su medio, pues su capacidad cerebral no es suficiente para llevar cualquier otro tipo de existencia. En resumen, no pueden aislarse del ambiente de forma significativa. Por consiguiente, no cabe la menor duda de que el medio desempeña un poderoso papel de control en la selección de las capacidades máximas de estos organismos infrahumanos. La perspectiva ascendente explica indudablemente ciertos procesos del mundo biológico. Sin embargo, en mi opinión, la teoría es manifiestamente inadecuada para explicar la evolución humana.

Según la perspectiva descendente, los elementos claves de la historia humana son los cambios cerebrales inducidos genéticamente. En concreto, fue la creciente capacidad del cerebro humano, incluso la de aquellos primeros homínidos, para hacer inferencias la que los apartó de cualquier otra especie que haya existido anteriormente en el reino animal. La capacidad de hacer inferencias, consistente en unir dos variables nuevas en una hipótesis sobre las posibles causas de los acontecimientos, también es el sustrato de la formación de creencias. Ya hemos visto anteriormente que la capacidad de hacer inferencias es una propiedad exclusiva del cerebro humano, y que dicha capacidad puede estar ligada a ciertos sistemas específicos del cerebro. La posesión de esta capacidad liberó al hombre del severo control del medio. No hace falta decir que esta capacidad también puede ser una espada de doble filo.

Piénsese en el poder de un sistema que puede hacer inferencias en comparación con otro que no puede⁵. En los homínidos primitivos, las capacidades de inferencia eran limitadas, pero con todo contribuyeron a la notable capacidad cognitiva observada en el hombre primitivo. Supongamos, por ejemplo, que el Homo erectus disponía de una herramienta de piedra A hecha de piedra del tipo B. Siempre estaba frustrado porque la piedra se astillaba con demasida facilidad. De pronto ve cómo una peña cae con estrépito de una colina y observa que no se hace añicos. Quizás el Homo erectus era capaz de inferir que una herramienta hecha de este material duraría más. La capacidad de hacer inferencias ahorraba tiempo y abreviaba el método, siempre a mano pero extremadamente lento, del ensayo y error. Con la aparición del cerebro mucho más complejo del hombre de Neanderthal, y finalmente del Homo sapiens sapiens u hombre moderno, la capacidad

de hacer inferencias prosperó hasta alcanzar su actual nivel de esplendor, en el que la inferencia se ha hecho tan automática como un reflejo neural periférico.

¿Podemos obtener pruebas de la existencia en el hombre primitivo de sistemas inferenciales en desarrollo aplicando a la interpretación de los restos arqueológicos los conocimientos obtenidos en la investigación contemporánea sobre el cerebro? La respuesta es claramente afirmativa, y deriva de la investigación sobre pacientes con el cerebro dividido, que pone de manifiesto la capacidad del hemisferio izquierdo para hacer inferencias. Esta singular capacidad de los procesos del cerebro izquierdo parece localizarse en una región coincidente con las áreas lingüísticas del cerebro. Esta es la pista que tenemos que seguir. Sabiéndolo, uno puede analizar los datos prehistóricos proporcionados por los vaciados craneales y tratar de obtener información sobre la evolución de los procesos cerebrales en que se basan los procesos de inferencia estudiando los sistemas en que se apoya el lenguaje, ya que éstos son más fácilmente identificables.

Los vaciados craneales prehistóricos se han obtenido a partir de los cráneos de diversos homínidos descubiertos por arqueólogos de campo. Estos vaciados nos permiten medir el volumen del cerebro, que es un aspecto muy discutido de los datos arqueológicos sobre la evolución del cerebro humano. Es dudosa la afirmación de que los cerebros de mayor tamaño son mejores para la cognición, ya que un cerebro grande no necesariamente significa una mejor calidad cognitiva, aun teniendo en cuenta el peso del cuerpo. Así, por ejemplo, ahora sabemos que la capacidad cognitiva de una persona con medio cerebro que tenga un volumen de tan sólo 700 centímetros cúbicos puede ser la misma que la de otra con un cerebro normal que tenga un volumen de 1.250 centímetros cúbicos aproximadamente. Con esta premisa, un argumento que sos-

tenga que la capacidad cognitiva de un organismo con un cerebro de 1.000 centímetros cúbicos (Homo erectus) debería ser diferente de la de aquellos que tienen un cerebro de 1.300 centímetros cúbicos (Homo sapiens sapiens) es discutible. Es evidente que hay diferencias en la organización interna de los cerebros de las especies primitivas del ser humano, y que estas diferencias son las responsables de sus diferentes competencias. No obstante, ha sido prácticamente imposible encontrar pruebas de la existencia de esas diferencias de organización interna, ya que los restos disponibles son sólo de huesos del cráneo; los cerebros hace ya mucho tiempo que se han descompuesto.

Sin embargo, hay una forma en que se puede abordar este problema. Alexander Marshack, científico con un inmenso conocimiento de la literatura arqueológica, me habló de una de las observaciones más curiosas que había realizado sobre los fósiles humanos el paleontólogo francés Yves Coppens⁶. Coppens fue capaz de identificar la distribución relativa del flujo sanguíneo sobre distintas áreas claves del cerebro mediante el procedimiento de reconstruir minuciosamente los cerebros fósiles de tal forma que revelasen el suministro sanguíneo sobre las superficies laterales del cerebro. Estas pautas de distribución se descubrieron examinando las superficies laterales de los cráneos de las distintas especies, sobre las cuales dejan huellas los vasos sanguíneos. Marshack no sabía qué conclusión extraer de estos hallazgos, pero muy amablemente me envió el artículo.

Los descubrimientos claves de este estudio añaden una dimensión fascinante al conocimiento que tenemos de los cerebros humanos primitivos. La parte del cerebro que actualmente sabemos que es crucial para el lenguaje y la capacidad de inferencia no llegó a estar demasiado vascularizada hasta que se produjo la evolución del *Homo sapiens sapiens*, es decir, del hombre moderno. No obs-

tante, en los primeros homínidos se puede observar que la vascularización de las regiones apropiadas del cerebro se produjo de forma gradual. La importancia de esta observación estriba en que la vascularización es crucial para que la actividad cerebral sea productiva y eficaz. Sin un buen riego sanguíneo que aporte los nutrientes necesarios a los centros cerebrales activos, los procesos mentales asentados en ese centro sólo funcionarán débilmente. Sin suministro sanguíneo, como ocurre en los casos de ataque cerebral, no hay función. Los datos de Coppens demuestran claramente que la superficie lateral de los hemisferios cerebrales está densamente vascularizada en el área cerebral conocida como área de Wernicke. Toda esta zona del cerebro izquierdo es responsable de los principales procesos lingüísticos y en ella se encuentran también las áreas que posibilitan los procesos de inferencia. Estamos en presencia de una notable correlación.

La importancia de esta observación reside en la idea de que, en el caso de los humanos, los procesos de evolución son procesos descendentes o de arriba-abajo. Hasta la aparición del nivel de suministro apropiado de los vasos sanguíneos, junto con el tejido cerebral subvacente que éste mantiene, muy probablemente no fueron posibles los tipos de función cognitiva que, según sabemos actualmente, favorecen estas áreas cerebrales. La consecuencia de esto es que ningún tipo de influencia ambiental (positiva o negativa) sobre el organismo habría favorecido a la especie en cuestión más allá de lo que resultaron ser sus límites superiores. Lo más importante es que era necesario un cambio central en la arquitectura cerebral antes de que las capacidades cognitivas humanas adquiriesen el potencial de liberarse de las condiciones ambientales.

El ordenador actual nos puede servir de base para trazar una analogía. Un ordenador con la configuración A tiene una capacidad limitada. Si añadimos otra tarjeta de memoria, cambiando el ordenador a la configuración B, cambia la capacidad de la máquina. Dicho así, no parece nada extraordinario, pero se trata de algo sumamente importante. La analogía nos indica qué es lo primero que tiene que suceder en los procesos de evolución para que se produzcan cambios socialmente significativos. Esos cambios tienen que producirse en primer lugar en el hardware, en la arquitectura cerebral. Hoy en día nadie les pediría a las personas con deficiencias cerebrales, a aquellas que sufren demencia o retraso mental, que mejorasen sus capacidades elementales. Ni tampoco puede uno asombrarse, por consiguiente, de la «meseta» cognitiva alcanzada por el Homo erectus. Su cerebro no estaba preparado para dar el siguiente paso. Naturalmente, todo esto recuerda las características esenciales de la organización cerebral que tratamos en el capítulo 2.

Desde el punto de vista psicológico no ocurre nada hasta que la región neural adecuada del cerebro del hombre moderno no haya llegado a ser fisiológicamente funcional. Antes de abandonar este aspecto de la prehistoria, tengo que señalar que, hasta ahora, he habladdo de los procesos sociales que resultan de la capacidad del hemisferio izquierdo para hacer inferencias. Pero es igualmente importante darse cuenta de que los procesos cerebrales, tales como los cambios en las pautas de vascularización acompañados de sus correspondientes cambios en la anatomía neural subyacente, se producen, por lo general, de forma simétrica. El cerebro derecho recibe el mismo tipo de atención que el izquierdo. ¿Qué sabemos de las regiones correspondientes del cerebro derecho? ¿Hay procesos especializados activos en el mismo que sean de importancia crucial en la evolución tal como se comprende actualmente? Al menos existen algunos indicios interesantes.

Recordemos que los objetos de calidad estética no surgen realmente hasta la aparición del hombre de Neanderthal, y que éstos se realizaron en las herramientas de piedra y en los primeros signos de ornamentos. Después, con el hombre moderno, la actividad estética adquirió importancia, desde la famosa cueva de Lascaux hasta los logros actuales. ¿Posee la ciencia del cerebro información sobre los mecanismos de los que depende el comportamiento estético? Hay algunas pistas nuevas al respecto.

Recordemos los descubrimientos descritos en el capítulo 8 acerca de aquellos pacientes que tenían lesiones en la parte posterior del cerebro derecho. Sufrían alteraciones al tratar de reconocer caras nuevas, distinguir la orientación de líneas y otros tipos de percepciones. En resumen, tenían problemas para percibir o evaluar el material estimulante. ¿Podrían afectar esas lesiones a la capacidad de hacer juicios estéticos? O, en el contexto presente, ¿podrían realizarse juicios estéticos sin una estructura cerebral determinada?

Tuvimos la oportunidad de analizar esta cuestión en una paciente con el cerebro dividido. Estudiamos a V. P. de tal forma que nos fuera posible examinar la vida perceptiva y estética de cada una de sus mitades cerebrales con independencia de cualquier otra influencia. Recuérdese que el cerebro derecho de V. P. es enormemente superior al izquierdo en lo que respecta a la discriminación de estímulos tales como rostros nuevos. Esta condición hace de V. P. el caso ideal para plantear las cuestiones de estética.

Los rostros que utilizamos en el experimento eran fotografías que procedían del anuario de mi universidad y que variaban en el atractivo que cada una presentaba. Sobre una escala de 10 puntos y en una medición efectuada de forma independiente, algunas caras estaban muy próximas al 10 en atractivo y otras al 1. La prueba consistía en que cada mitad del cerebro hiciese una valoración del atractivo de las fotografías. Los resultados fueron claros. La mitad derecha del cerebro hizo una valoración de los estímulos, y las distinciones que realizó fueron las mismas que las realizadas por sujetos normales. La mitad izquierda del cerebro, que es dominante en lo que respecta al lenguaje y a la cognición general, fue enormemente imprecisa en su valoraciones, mostrándose incapaz, por así decir, de distinguir una bella de una bestia.

Parece que, junto con el desarrollo de la capacidad inferencial y sus consecuencias para la comprensión más rápida y eficaz de los misterios del ambiente, se desarrolló también un apetito estético. No se trata solamente de que se fabricaran más herramientas con nuevos tipos de funciones. Estas tenían que poseer también un aspecto determinado. En cierto sentido, las cosas no sólo tenían que ser útiles desde el punto de vista funcional, sino que también tenían que resultar agradables. Con una estructura cerebral que controlaba este tipo de actividad mental, no es extraño que el hombre de Neanderthal, además de fabricar herramientas con un mayor sentido estético, se sintiera atraído por la ornamentación.

Esto ocurrió hace cuarenta mil años, cuando el hombre moderno comenzaba a vivir en la sabana. Su gran cerebro estaba preparado para grandes cosas. Tardaría algún tiempo, pero este ser humano capaz de hacer inferencias estaba ya listo para plantearse cuestiones de mayor importancia sobre el ambiente y obtener de él cosas también más importantes. En el momento actual de la evolución cultural, el progreso ocurre de forma tan rápida que es casi imposible detectar las causas originales. Una vez puesta en práctica una idea a la que le ha llegado el momento, es difícil predecir y evaluar la multitud de formas en que afecta a una cultura convirtiéndose en

parte del tejido de la humanidad. Este es el problema que hace tan difícil la tarea del historiador.

No obstante, quiero ocuparme de otro acontecimiento que tuvo lugar durante la prehistoria, en torno al año 8.300 antes de Cristo, y tratar de analizar las razones por las que se produjo. Se trata de un acontecimiento muy importante para el ser humano: la formación de grandes grupos de personas. ¿Por qué nuestra especie optó por pasar de grupos pequeños a grupos grandes? Creo que este hecho demuestra el nexo de unión entre los principios que gobiernan los comportamientos infrahumanos y los principios cognitivos específicos de la especie humana. En otras palabras, los mecanismos de preferencia, que son una parte importante del comportamiento de los vertebrados, podrían ser el principal factor motivacional a la hora de desencadenar el comportamiento social humano. Una vez que se ha producido un comportamiento determinado, los humanos hacen inferencias sobre su posible significado. Estas hipótesis se convierten en candidatas a creencias que, a su vez, pueden imponerse a los mecanismos de preferencia más primitivos. La consideración de estos fenómenos demuestra, por tanto, la conexión humana con el pasado y, además, revela el modo como nos liberamos de las severas restricciones del medio.

Esto nos lleva hasta el Israel actual. Festinger estaba pasando su año sabático en Jerusalén, donde organizó un congreso, en esta ocasión dedicado a la vida primitiva en el Levante. David Premack canceló el viaje en el último momento, por lo que Festinger y yo decidimos dar su billete a Jeff Holtzman, alumno de ambos. Fue un viaje excelente. ¿Puede Jerusalén ser otra cosa que maravillosa?

Festinger había organizado muy bien el congreso. Para que las conferencias interdisciplinarias funcionen es necesario un cabeza de turco, alguien que pueda plantear cuestiones provocativas desde todos los puntos de vista. En este encuentro me correspondió a mí interpretar ese papel, y tengo que decir que lo hice con cierta desenvoltura. Lo estaba haciendo de maravilla hasta la última mañana, cuando un arqueólogo jubilado se dispuso a dar una charla sobre la importancia del color ocre en las culturas primitivas. En su buenos tiempos este hombre había hecho buenos trabajos y había mostrado la gran importancia del ocre en las pinturas corporales. La sustancia roja se utilizaba en los tintes, en la ornamentación, etc.

El problema era que ese anciano terminaba su historia y luego volvía a empezarla. Mientras desgranaba la repetición de su historia y daba la impresión de tener a mano aún otro *encore* sobre el ocre, Festinger se inclinó sobre mí y me dijo que hiciera algo. No hay problema, le dije, pues tenía varias preguntas preparadas. Y debido a cierto problema de comprensión fonética, me enzarcé en una inolvidable discusión.

«Perdone», le dije al profesor, «pero, ¿no pudo haberse utilizado la sustancia inicialmente como alimento?» Todos se volvieron hacia mí. Durante varios días dieron por supuesto que yo sabía de lo que hablaba, y por eso unieron sus sabias mentes en busca de algún indicio que se les hubiese pasado por alto de que también era así en esta ocasión. Por fin, exclamé, «ya sabe, para cenar por ejemplo». El viejo profesor me miró y dijo: «¿Pero cómo se prepararía?» No podía creerlo. «Pues cociéndolo. Lo comíamos muy a menudo en California. Mi madre hacía una excelente compota de okra.» Poco faltó para que hubiera que sacar a Holtzman en camilla. Festinger, que de vez en cuando es muy generoso conmigo, pensó que había dado con una forma magistral de poner fin a la charla del viejo profesor.

Nuestro anfitrión, el arqueólogo israelí Ofer Bar-Yosef, uno de los profesores más estimados de la Hebrew

University, nos mostró importantes yacimientos arqueológicos. Bar-Yosef podía describirnos algunos de los principales acontecimientos que habían tenido lugar en el Levante hace aproximadamente entre 12.000 y 8.000 años; estaba muy familiarizado con esos hechos, ya que muchos los ha descubierto él mismo. Junto con su equipo había trazado detalladamente el mapa de varios yacimientos, algunos próximos a Jericó, en la parte central de Israel, y otros mucho más al sur, en el Sinaí. Muchos de estos lugares contienen los restos de un pueblo y una cultura: los natufianos⁸.

Los natufianos eran un pueblo sedentario que vivió en el período comprendido entre los años 12.000 y 10.000 antes de Cristo. Construían casas y, al principio, formaban grupos pequeños de 30 a 50 personas. Las comunidades se extendieron desde el Norte de Siria hasta el Sur del Negev. Los natufianos se alimentaban bien; su dieta consistía principalmente en gacelas, corzos, cabras montesas y pescado. Resulta evidente a partir de sus herramientas y de los restos de sus alimentos que también hacían uso de cereales silvestres y legumbres de todas las clases. En todos los lugares que habitaron, los arqueólogos encuentran morteros y manos de mortero, pequeñas herramientas de piedra que utilizaban como púas o puntas de flecha, así como hojas de hoz y algunos anzuelos. A diferencia de sus predecesores, los natufianos parecían capaces de elegir lo que tenían que comer cada día. Esto era expresión de la insistencia del cerebro en las preferencias. Nuestra especie estaba descubriendo los placeres de la variedad

Los descendientes de los natufianos, conocidos también como granjeros del neolítico, fueron los primeros que cultivaron los cereales. Las herramientas se adaptaron para afrontar estas nuevas ocupaciones y se construyeron almacenes para guardar las cosechas. En resumen, una vez que tomó cuerpo la idea de una vida sedentaria, y junto con el desarrollo de todas esas actividades especializadas, incluidas la domesticación de cabras y ovejas que ocurrió un poco más tarde, el hombre inventó formas de enfrentarse con la abundancia que le proporcionaba su nueva habilidad para adaptar el ambiente a sus necesidades. En este ambiente de diversidad de productos, los humanos parecen haber descubierto otra idea fundamental: la idea de los grandes grupos o aldeas.

Bar-Yosef explica que, hace aproximadamente 10.300 años, se produjo un cambio espectacular en el tamaño de los campamentos natufianos. En un período de 300 años, que en tiempo arqueológico equivale a un par de segundos, los emplazamientos natufianos aumentaron hasta albergar 400 o más personas. ¿A qué se debió este aumento de tamaño? En cierto modo no parece que hubiera necesidad del mismo. El alimento es abundante, y no hay pruebas de la existencia de hostilidades o desastres naturales. Las pequeñas unidades de 30 personas parecen perfectamente adecuadas. ¿Por qué estos prósperos grupos decidieron de pronto formar agregados mayores? Los registros arqueológicos no pueden responder de esta cuestión. Creo que una interpretación psicológica de los datos brinda algunas posibilidades interesantes.

Pensemos en cómo era la vida de los primeros natufianos antes de la aparición de los nuevos productos⁹. Aunque no tan monótona como la del *Homo erectus*, la vida del natufiano era bastante aburrida. Comían el mismo tipo de animal día tras día, año tras año, y no hay muchas maneras distintas de preparar la cabra montesa o la gacela. No había otros alimentos importantes. Las actividades cotidianas consistían en fabricar herramientas para cazar y, a continuación, cazar la gacela para la cena. En un ambiente como éste, no parecía estar presente la conocida tendencia del hombre moderno a expresar sus

preferencias. En un grupo mayor sólo cabía esperar más de lo mismo.

Entonces comenzaron a ocurrir cosas en la cultura natufiana. Debido a distintos descubrimientos, como la pesca, el cultivo del grano, la selección a la hora de matar gacelas, la tardía domesticación de animales, la proliferación de herramientas mejores, la creación de las joyas y posiblemente otras muchas cosas, los natufianos tenían dónde elegir. En lugar de gacela por enésima vez, la cena podía consistir en un poco de pescado con cereales. La compañera podía colgarse un collar; él podía disponer de una lanza más sofisticada. Era una época de bonanza para nuestra especie, que se iba a organizar para beneficiarse de la nueva variedad de riquezas. La gente iba a unirse en grupos de vida mayores. Con todas estas nuevas especialidades eran necesarias más personas para producir los artículos.

En un grupo de 400 personas, algunos podían ser pescadores y otros cazadores, granjeros u orfebres. Tenía sentido abandonar la vida sencilla e ir a la ciudad. Había algo que hacer, se podía disfrutar y tener preferencias. El sistema de preferencias de los humanos, asentado en el cerebro, podía por fin expresarse, lo que, en mi opinón, resultó ser una poderosa fuerza en la formación de la dinámica de grupo y de aldeas. Naturalmente, una vez formados los grupos, se desarrollaron nuevas ideas sobre el valor social de otros servicios, como, por ejemplo, las letrinas y el suministro de agua. Es cierto que surgieron y se vieron reforzadas las hipótesis sobre el valor de vivir en grupos mayores, pero el factor inicial para optar por vivir juntos estaba relacionado, en mi opinión, con los placeres derivados de permitir que el sistema de preferencias entrase en acción.

Fue David Premack quien puso de manifiesto la importancia de las preferencias como motivación para la acción¹⁰. Premack ha estudiado este proceso en ratas, en monos y en niños con retraso mental. El trabajo de Premack demuestra que un vertebrado no sale de la inactividad a menos que se establezca una dependencia entre una respuesta poco probable y otra más probable. Esto significa que es muy difícil hacer que Juanito se coma las judías a menos que sepa que hay helado de postre.

¿Son realmente tan importantes las preferencias en la motivación del comportamiento? En una serie clásica de experimentos con ratas, Premack demostró tanto la importancia de la preferencia para la acción como la naturaleza relativa del refuerzo. Premack dejó que un grupo de ratas bebiese cuanto quisiera. Sin embargo, a las ratas no se les dio la oportunidad de hacer ejercicio regularmente, esto es, de correr. Otro grupo tenía acceso libre a un carrusel, pero únicamente se le permitía beber un poco de agua, la suficiente para mantenerse con vida. Las cuestiones que se planteó Premack fueron: ¿Beberían más las ratas saciadas si se les diera la oportunidad de correr? ¿Correrían más las ratas que habían hecho ejercicio si se les diera la oportunidad de beber? La respuesta a ambas cuestiones fue un rotundo sí. Cualquier cosa puede ser un refuerzo con tal de que sea el comportamiento preferido en el momento en que se realiza la prueba.

Considérese otro ejemplo. En esta ocasión, Premack colocó diez llaves de diferentes tipos y formas delante de un mono. El mono mostró preferencia por una de las llaves en detrimento de las otras. Es decir, que un mono determinado estaría más tiempo jugando con la llave A que con la B, más con la B que con la C, etc. En resumen, el mono demostró una jerarquía de preferencias. Entonces Premack estudió si podía influir en la cantidad de tiempo que el mono pasaba con una llave determinada, y le resultó fácil conseguirlo. Todo lo que tenía que hacer era manipular las preferencias del mono. Si quería aumentar

el tiempo que el mono pasaba jugando con la llave C, todo lo que tenía que hacer era darle la oportunidad de jugar con su llave preferida (en este caso, las llaves B o A) dependiendo de lo que hubiera jugado con la llave C. Una respuesta más probable refuerza otra menos probable, y nunca ocurre al revés.

La importancia de las preferencias para los humanos no es menor. Las preferencias de los humanos pueden ser sistemáticamente manipuladas por un psicólogo inteligente. Pueden aumentarse, invertirse y disolverse. Aunque se basan en sistemas cerebrales muy antiguos, las preferencias desempeñan un papel crucial en los complejos procesos psicológicos que contribuyen a la construcción de las creencias humanas.

Si aplicamos este bien desarrollado principio psicológico a los natufianos, podemos dar con una explicación. La aparición de numerosos artículos de consumo hizo que se desencadenaran poderosas fuerzas. Con anterioridad a su aparición, el valor motivacional de poseer una jerarquía de preferencias permanecía inactivo debido a la escasez de bienes disponibles. El grupo pequeño era suficiente. Con el advenimiento de un mayor número de productos, que permitían que el sistema de preferencia funcionase, el grupo pequeño no resultaba adecuado para proporcionar los bienes que requerían las preferencias. Los grupos grandes sí eran adecuados, y cuando, movidos por impulsos bastante primitivos y comunes a todas las especies, éstos se formaron, comenzó inadvertidamente una nueva era para los humanos. Este nuevo clima social sirvió de catalizador para la formación de un número casi infinito de creencias e instituciones sociales.

Los humanos modernos hacen inferencias reflexivamente y sobre casi todo. Hacen inferencias correlacionando dos acontecimientos que tienen lugar de forma contigua. La mente normal obtiene un gran placer en construir teorías basadas en estas correlaciones superficiales. Sólo una mente formada y educada sabe inhibir este reflejo y en ocasiones buscar causas ocultas o de otro tipo. Como sabemos, se trata de un proceso muy activo debido a que el establecimiento de correlaciones superficiales es mucho más fácil y, por lo general, resulta divertido.

Pensar, incluso pensar elementalmente, es algo exclusivo del hombre, que le ha permitido adaptarse y controlar partes del ambiente para sus propios fines. Pensar con claridad sobre variables complejas también es algo exclusivo del hombre, pero es una tarea difícil. El hombre lo hace muy raramente. Para hacerlo es necesario ser consciente de la información acumulada. Sin la información acumulada, el hombre únicamente tiene la capacidad más elemental y rudimentaria de pensar. La información no se acumulaba durante los tiempos prehistóricos, y esta es la razón por la que el hombre primitivo tardó tanto en desarrollarse. La cultura no facilitaba suficientes datos al cerebro inferencial para poder avanzar.

Henri Frankfort sostiene, en contra de las opiniones populares de que el hombre prehistórico era prelógico, que los procesos de pensamiento del hombre primitivo eran perfectamente claros¹¹. Frankfort ha resaltado la profunda verdad de que el hombre primitivo vivía al filo del presente. No había historia ni registro de la experiencia. No había otra cosa que reacciones subjetivas a los acontecimientos inmediatos. En tal situación, los avances culturales humanos se producían de forma sumamente lenta.

Sin embargo, quizás una situación como esa no fuera tan perjudicial. Sin historia escrita, había pocas oportunidades de que un humano pudiera malinterpretar los datos que le brindada la vida de su vecino. Por consiguiente, habría menos disputas entre las personas.

De acuerdo con esta idea, no hay pruebas en los registros de la prehistoria que pongan de manifiesto la existencia de violencia entre los humanos. El homicidio puede haber sido tan raro como el que un pato mate a otro pato. Si todos los miembros de la especie disponían de la misma información, no resulta extraño pensar que hicieran las mismas inferencias y desarrollasen las mismas creencias sobre la naturaleza del mundo. En consecuencia, los conflictos eran raros.

No obstante, con el advenimiento de los grupos, las hostilidades llegaron a ser habituales. Las guerras a gran escala tuvieron lugar cuando el hombre desarrolló la oportunidad de satisfacer sus preferencias mediante el diversificado entorno que había construido para él mismo. Las guerras también llegaron más o menos en la época en que comenzó a registrarse el comportamiento humano. Es difícil imaginar un ambiente más perfecto para el desarrollo del sistema humano de inferencias y para la generación de creencias sobre la naturaleza de la cultura. Estos tiempos representan el agitado comienzo de la cultura humana compleja. En lugar de vivir únicamente en el presente, era posible interpretar lo que otros habían experimentado en el pasado. Naturalmente, esto dio lugar a los comienzos de la interpretación histórica. Se trataba del marco ideal para la difusión de creencias, de opiniones diferentes sobre el mundo.

En resumen, los registros arqueológicos sugieren que se desarrollaron determinadas áreas del cerebro para realizar funciones específicas que, a su vez, dotaron de nuevas capacidades a nuestra especie. Estas capacidades, como es el caso de la inferencia y la estética, están claramente presentes en el Homo sapiens sapiens. El origen de las mismas puede establecerse remontándonos hasta el Homo erectus, o quizás más allá. Las consiguientes capacidades cognitivas llegaron más lentamente y, en la

prehistoria, el hombre primitivo era más capaz de producir respuestas asociativas que de realizar saltos inferenciales. Sin embargo, una vez que la inferencia fue posible, el hombre moderno se vio inmerso en una forma de vida más difícil, a la que parecía estar predestinado. La capacidad inferencial llevó a la formación de creencias, las cuales no sólo-se referían a su propio comportamiento, sino también al comportamiento presente y pasado de otros miembros del grupo. Tales actividades mentales originaron, a su vez, el proceso de liberación del hombre de la influencia de las fuerzas ambientales.

Capítulo 11 Sobre la inevitabilidad de las creencias religiosas

Para la mayor parte de las personas, el comportamiento religioso expresa una creencia firmemente arraigada. Los creyentes más comprometidos son aquellos que dedican mucho tiempo al estudio de los dogmas y afirmaciones de su credo concreto y que practican las reglas de su fe. Incluso los cristianos del domingo y los musulmanes del viernes son creyentes y forman parte del grupo que sigue a los verdaderos creyentes. En Qum, en la época en que se escribió este libro, unos catorce mil mullahs pasan de siete a treinta y cinco años de su vida estudiando los misterios del Islam, de manera que en los años restantes puedan aconsejar a los iraníes. Se trata de auténticos creyentes.

Las fuerzas que contribuyen a la formación de firmes creencias religiosas proceden tanto del medio ambiente como del yo. Con el fin de inculcar creencias firmes, la religión de que se trate tiene que ejercer inicialmente un férreo control sobre los neófitos. Sus promulgadores tra-

tan de crear un ambiente que minimice las situaciones en las que puede ponerse en cuestión un dogma religioso. Permitir que se produzca un comportamiento que entre en conflicto con los dogmas de la creencia debilita a esta última. Para el verdadero creyente, cosas tales como el acostarse con alguien sin estar casados o beber whisky, deben estar estrechamente controladas. El descubrimiento de que, después de transgredir las creencias del grupo, a uno no se le cae instantáneamente la cabeza por voluntad de Dios o de Alá, o de quien quiera que sea, puede ser una información perturbadora para el joven creyente. Las ocasiones de que nuestro múltiple sistema mental pueda entrar en acción deben prohibirse.

En las creencias religiosas, al igual que en cualquier otro tipo de creencia, observamos de nuevo que el intérprete del cerebro izquierdo pretende explicar una serie de experiencias de la vida. Del mismo modo que se encarga de suministrar sobre la marcha una explicación de los comportamientos de nuestros módulos independientes, se encarga igualmente de explicar los acontecimienos de la vida real y las circunstancias existentes en la cultura. El módulo intérprete del cerebro izquierdo, que está ligado al sistema de inferencia humano, se esfuerza para construir teorías coherentes sobre las causas de los acontecimientos percibidos. También tiene interés el hecho de que nuestros cerebros acepten las teorías que este sistema propone.

¿Pero de qué modo comenzó la idea de la religión? ¿Por qué generó nuestra especie la idea de la divinidad? La naturaleza y los orígenes de las creencias religiosas son, en mi opinión, una historia compleja y susceptible de varias interpretaciones, que pone de manifiesto la importancia esencial del mecanismo psicológico asentado en el cerebro que he venido describiendo. Lo que voy a sostener es que las creencias religiosas fueron inevitables y

surgieron una vez que el intérprete del cerebro izquierdo estuvo completamente acabado y listo para buscar comprensión y coherencia. Surgieron explicaciones y se crearon instituciones para dirigir y afrontar los problemas de la existencia humana y el origen cósmico. Una vez creadas, dado su enorme poder coercitivo, tales instituciones tienen una forma de permanecer.

Opiniones alternativas, como las que actualmente suministra la ciencia o las que en su día aportó Aristóteles, han desempeñado y continúan desempeñando un papel subordinado respecto a las creencias que implican verdades reveladas. Haciendo un esfuerzo por explicar este hecho, podría decirse que la aceptación de creencias que «no son de este mundo» se debe a otra especial capacidad del cerebro humano: la capacidad para el pensamiento mágico. Me explico.

Hay una zona del cerebro humano que, si se manipula, origina profundos cambios en la psique de una persona. Una lesión en esta región, que puede ocurrir por distintas razones, tiende a causar un cambio en tres tipos de comportamientos. El primero que describió detalladamente este «síndrome del lóbulo temporal» fue Norman Geschwind, médico, ya desaparecido, de la Harvard Medical School¹. Yo me hubiera mostrado extremadamente escéptico con su descripción si no hubiera observado un caso que coincidía totalmente con ella. Actualmente, este síndrome se ha descrito varias veces. En su forma elemental, la lesión del cerebro causa una intensificación de las convicciones religiosas, un deseo de escribir mucho (hipergrafía) y la realización de extrañas actividades sexuales². Que yo sepa, no hay razón alguna a priori por la que estos comportamientos tengan que estar relacionados entre sí.

La realidad del síndrome no resulta divertida. Lo que aquí nos interesa es el aspecto religioso del síndrome mismo. No sólo se intensifican las convicciones, sino que la forma que adoptan se vuelve irregular y la persona cambia rápidamente y sin causa aparente de una creencia a otra. Los procesos cerebrales que posibilitan las interpretaciones no racionales y mágicas de los acontecimientos que suelen aparecer en las historias religiosas de la creación están más sensibilizados que nunca. Aparentemente, no importa la creencia concreta que se activa en este proceso. En cierto modo, la lesión cerebral libera a los pacientes de sus historias personales y los prepara para aceptar cualquier tipo de creencias. Estos fenómenos clínicos sugieren que puede establecerse un equilibrio dinámico en el cerebro entre los sistemas que generan hipótesis y los sistemas que aceptan tales explicaciones en la medida en que satisfacen criterios racionales. El estado cerebral normal posibilita un cierto nivel de creencias no racionales y mágicas. El estado enfermo y desinhibido rebaja de tal forma los criterios que la aceptación y el cambio rápidos de creencias se convierten en la norma.

Si en nuestros cerebros modernos hay redes que nos inclinan a las creencias mágicas, se sigue que debería haber pruebas de la existencia de comportamiento religioso en los humanos primitivos, al menos en los que poseían el mismo tipo de cerebros que nosotros. Esto significa que, si examinamos los registros prehistóricos de hace aproximadamente entre cuarenta y sesenta mil años, deberíamos encontrar pruebas de la existencia de prácticas religiosas. Pues bien, resulta que hay abundancia de tal tipo de pruebas.

Las pruebas de prácticas religiosas anteriores al año 3.000 antes de Cristo tienen que inferirse de registros arqueológicos no escritos. Los datos proceden en su mayor parte de diversas prácticas funerarias que pueden retrotraerse al menos hasta hace cuarenta mil años, y algunos arqueólogos sostienen que existen incluso pruebas ante-

riores³. La mayor parte de los datos consiste en la extraña posición en que se encuentran los huesos de los diversos esqueletos humanos desenterrados. Pruebas más indirectas se hallan en las pinturas rupestres del sur de Francia. Estas pinturas demuestran que, hace diecisiete mil años, el hombre podía dibujar con maestría, mostrando habilidades tales como la interposición, el sombreado y otras técnicas artísticas. Con todo, estas habilidades, que dieron origen a la percepción de la forma y la profundidad, sólo se aplicaron a los animales. Las representaciones humanas que aparecían en estas pinturas eran malísimas en comparación con las de animales, y en su mayor parte se trataba de simples figuras confeccionadas a base de palotes⁴.

Algunas pinturas muestran figuras medio humanas y medio animales. Algunos historiadores han especulado sobre la posibilidad de que estos datos indiquen que existía algún tipo de devoción religiosa. Afirman que, por alguna razón desconocida, era tabú representar al hombre en tablillas o en cualquier otro soporte duradero.

Como quiera que sea, hay muchos datos arqueológicos que indican que los humanos primitivos se entregaban a prácticas que no tenían un valor utilitario evidente. Algo mágico tenía que ocurrir en sus procesos de pensamiento que los incitase a este tipo de actividades. Esos hombres primitivos tenían alguna creencia relativa a la singularidad de su especie.

Hasta la llegada de los registros escritos, no es posible rastrear los antecedentes mentales de la religión humana, tal como la conocemos actualmente. Recuérdese que se trataba de cerebros como los nuestros que se ocupaban de los datos presentados por ese ambiente. El dispositivo inferencial del cerebro humano tenía enormes deseos de proponer una teoría para racionalizar las actividades según una realidad parsimoniosa. Al igual que en nuestro

tiempo, el cerebro quería hallar coherencia en una serie de acontecimientos que, de otro modo, no podían interpretarse. Y, en contra de lo que se suele suponer, mi interpretación del tema sugiere que el sistema humano basado en el cerebro luchó fundamentalmente por adoptar una forma de monoteísmo, ya que esa es la interpretación de la creación más parsimoniosa. La razón por la que sostengo esta interpretación será obvia inmediatamente.

Piénsese en el mundo hace diez mil años. A lo largo y ancho del mismo habría como mucho 10 millones de personas. De éstas, la mitad tenía menos de 10 años, y los más viejos y sabios de los poblados tenían sólo treinta. No hay razón para pensar que este humano capaz de hacer inferencias no experimentase cierta desesperación existencial. Mientras se regalaba con una gacela asada, podría preguntarse: «¿Qué significa todo esto?» Su dilema debía ser muy serio. Todo lo que hacía su organismo tenía sentido. Si no se levantaba y no iba a cazar, no comía. Si no construía una cabaña, pasaba frío. Si no cultivaba la tierra, su dieta era monótona. Finalmente se dijo: «Sé por qué hago todas estas cosas, pero, ¿por qué estoy aquí?»

Los primeros signos de las consecuencias de este proceso no aparecen, como ya he dicho, hasta el año 3.000 antes de Cristo, aproximadamente. Los registros escritos abundan desde esa época y existen en distintos ambientes culturales, lo cual es muy interesante para nuestros fines, ya que nos brinda la oportunidad de examinar algunas hipótesis de sillón respecto a lo que pensaba el hombre primitivo.

El modelo que propongo se basa en la suposición de que hay algo en la especie (una propiedad de nuestros cerebros) que nos inclina a creer en la existencia de un orden mayor del que se percibe. El mecanismo psicológico responsable de esta tendencia es el sistema de inferencia,

y actúa por medio del proceso de atribución y de la capacidad humana para aceptar creencias mágicas.

Imaginemos al hombre primitivo cuestionándose el significado de la vida, y asumamos que el cerebro puede aplicarse al pensamiento mágico. No hace falta decir que este humano primitivo va a buscar en el ambiente inmediato ideas sobre procesos sobrenaturales. El ambiente A puede dar lugar a una teoría de cómo debería ser un dios, y el ambiente B, si es verdaderamente diferente, tiene que producir otra teoría completamente distinta. En mi opinión, los registros históricos confirman esta hipótesis. La interpretación egipcia de la creación es totalmente distinta de la mesopotámica. Ambas tuvieron lugar aproximadamente por la misma época y ambas fueron producidas por el mismo cerebro humano que tenemos actualmente. Lo único diferente era el ambiente físico del cerebro. El desaparecido John Wilson, de la Universidad de Chicago, describió estas diferencias con asombroso detalle⁵.

Los egipcios veían el mundo como un lugar perfectamente ordenado; y su papel en el mismo, como algo de la máxima importancia. Vivían en un medio sumamente estructurado, el valle del Nilo. Cada mañana salía el sol por el Este y luego se ponía por el Oeste. Todo lo que los egipcios tenían que hacer para controlar su medio ambiente era tomar una semilla, plantarla en la tierra, regarla y enriquecerla con un poco de agua del Nilo y verla florecer. Las cosas estaban realmente bien ordenadas.

No es sorprendente, por tanto, que los antiguos egipcios hubieran inferido que el sol tenía poderes especiales. Llegaron a adorar al sol y generaron la idea de un dios sol, Ra. El sol tenía que ser la causa de su buena fortuna. El sol era masculino y en todas las leyendas era considerado el primer dios divino de Egipto. Este dios era tan importante, tan grande, que podía dividirse en entidades separadas, cada una de las cuales era responsable de un

aspecto elemental de la vida. Así, existía Ra-Atón, el dios creador de Heliópolis, y Ra-Harakhte, el dios del horizonte oriental, una dirección muy especial para los egipcios, ya que era por donde salía el sol cada nuevo día. Incluso las comunidades locales podían utilizar este dios. Para algunas se convirtió en Sobek-Ra, un dios cocodrilo; para otras, en Khnum-Ra, un dios carnero, etc. Es curioso que Ra mismo fuera representado con barba y portando dos discos sobre su cabeza.

Pero saber que los egipcios dieron gran importancia al sol y le otorgaron estatus divino no responde a la cuestión de por qué existen todas las cosas. Su pensamiento mágico necesitaba un creador, lo que se resolvió con facilidad. Ra-Atón, el dios creador, recibió el encargo de insuflar la vida en la ciudad de Hermópolis sobre un pequeño trozo de lodo de las primigenias aguas del Nun, el tipo de lodo que siempre deposita el Nilo durante las crecidas anuales. Cuando el Nilo se retira, estos fértiles montones de tierra nueva generan los fecundos terrenos de la estación. De este modo se originó el dios creador. Las creencias religiosas de los egipcios proceden directamente de sus experiencias cotidianas con el ambiente.

Este dios, Ra-Atón, también necesitaba ayuda, por lo que desarrollaron otros constructos. ¿Cómo podía realizar Re-Atum, el dios que se había creado a sí mismo, todas las tareas de su reino? Atón significa «lo que está concluido, completo, perfecto». Ante esto, Atón necesitaba evidentemente un equipo. Por ejemplo, ¿cómo se separaron los cielos y la tierra? Bien, la diosa Shu se ocupó de eso. Shu era la diosa del aire y la que sostenía los cielos. En algunos relatos se servía de columnas. Otras empresas requerían otros dioses y todos ellos formaban parte de la historia. Lo importante, sin embargo, es que en cierto sentido sólo había un dios supremo: Ra. Los otros dioses

no eran más que personajes secundarios en esta concepción de la creación. Y la trama se complica.

La representación física de todos estos dioses, desde Ra hasta los dioses menores, se había hecho poco atractiva para los ciudadanos que vivían en Memfis. Intelectualmente las cosas estaban un poco desordenadas, por lo que se desarrolló un concepto que explicaba mejor los problemas de la creación. Se inventó un nuevo dios supremo, no sólo para explicar las actividades de Ra, sino también como expresión de la idea fundamental de que no hay sino una fuerza detrás de todas estas actividades. Así entra en escena el dios Ptah. La fuente de nuestro conocimiento sobre el origen de Ptah es una lápida de piedra que se conserva en el Museo Británico.

Ptah se considera equivalente a Nun, las primigenias aguas de las que surgió Ra-Atón. Habiéndole otorgado a Ptah este estatus, la inscripción continúa diciendo que Ptah, debido a que es «el corazón y la lengua», lo cual significa la mente y el habla, creó a Ra y a sus dioses menores. Ptah quiere más. No sólo es el que otorga todos los poderes a los dioses, sino que quiere ser el poder que está detrás de todo lo que existe. La inscripción de la lápida dice: «Y ocurrió que el corazón y la lengua controlan (cada) miembro (del cuerpo) mediante la enseñanza de que él (Ptah) está en todos los cuerpos (en forma de corazón) y en todas las bocas (en forma de lengua) de los dioses, de los hombres, de (los) animales, de las cosas que se mueven y de lo que tiene vida, gracias a que (Ptah) piensa (como corazón) y ordena (como lengua) cualquier cosa que desea.» De esta forma se centraliza el poder y los egipcios disponen de una descripción de los acontecimientos mucho más parsimoniosa. Como ya han señalado otros autores, esta formulación contiene todos los rasgos del dios trino del Nuevo Testamento. Ptah es el corazón y la lengua. Sus ideas proceden del corazón y da órdenes por medio de la lengua. Compárese eso con «Al principio era el Verbo, y el Verbo estaba con Dios, y el Verbo era Dios».

Lo importante es que el ambiente ordenado del valle del Nilo generó un concepto más o menos ordenado de la creación. Desde Nun hasta Ptah se realizó un esfuerzo por conseguir un cierto tipo de monoteísmo, y esta sencillez reflejaba la sencillez de la vida tal como la experimentaban los egipcios. Además, esto nos prepara para comprender que la idea del monoteísmo probablemente no era original de los hebreos. Desde luego, está implícita en la experiencia egipcia, aun cuando nunca llegase a realizarse del todo.

Examinemos ahora el modo como construyeron los mesopotámicos sus teorías sobre la creación y la religión. Por entonces la vida era diferente en lo que actualmente es Irak. En Egipto, el fecundo Nilo había dado lugar a una visión tranquila de la vida; el hombre era central y poderoso, y los dioses suministraban abundantes recursos para un vida generosa. En Mesopotamia no tenían tanta suerte.

A diferencia del Nilo, los ríos Tigris y Eufrates podían desalentar a cualquiera. Ocurrían crecidas inesperadas. Vientos abrasadores originaban tormentas de arena de enormes magnitudes. Las lluvias torrenciales convertían la tierra en un lodazal que impedía cualquier tipo de movimiento. Es un lugar cuyas condiciones ambientales son infinitamente complejas. Con el fin de hacer comprender cómo debió de haber sido este ambiente y lo dificil que tuvo que ser entonces elaborar una teoría razonable de la naturaleza, permítaseme hacer una breve digresión para considerar cómo funciona una institución moderna: la medicina. Las variables que actúan para mantener a alguien sano son indefinibles. Como decía mi padre, que era médico: «El misterio no está en por qué muere la gente, sino en por qué vive.»

Un doctor en medicina se enfrenta al caso de un paciente que padece una enfermedad de origen supuestamente identificable. El doctor diagnostica, prescribe y espera a ver si la solución propuesta tiene efectos. Si es así, el doctor archiva el diagnóstico en su mente con una teoría sobre su curación. A continuación, entra el siguiente paciente aparentemente con la misma enfermedad. El médico aplica el último tratamiento, que había dado resultado, pero en esta ocasión no tiene efecto. Sigue intentando una curación hasta que da con algo que surte efecto. Esa curación también es archivada, y tenderá a ser la que aplique en la siguiente ocasión, pudiendo o no surtir efecto.

En otro caso, el doctor propone una cura que formula en base a algunos datos falsos del historial del paciente. Dicha cura también pasa a engrosar el cúmulo de sabiduría médica. La consecuencia de este proceso ad hoc de pensamiento puede ser un conjunto de teorías falsas sobre la medicina. Pero la razón de que ocurra así no es un misterio. El médico moderno no es diferente de los antiguos mesopotámicos. El médico intenta funcionar en un ambiente borrascoso y diverso sobre el que normalmente tiene escaso control; hay demasiadas variables en juego. En mi opinión, en tales situaciones la gente adopta medidas o filosofías similares para hacer frente a sus problemas.

En la medicina moderna, los médicos adoptan por lo general una estrategia autoritaria para enfrentarse al mundo. Se dan cuenta de que todas las teorías que mantienen en privado necesitan un árbitro, y son conscientes de que sus grupos profesionales necesitan un plan de actuación. Se forman corporaciones, y mientras que en privado se defienden con vehemencia las posiciones individuales, normalmente se proclama una única actitud pública general, con lo que se disfraza el carácter ad hoc

de gran parte de su empresa. En términos generales, abundan las teorías para explicar los distintos acontecimientos, y se pone de manifiesto la necesidad de una autoridad central.

Al igual que el doctor, los mesopotámicos infirieron la existencia de una serie diversa de dioses para describir al paciente, que en su caso era el ambiente impredecible. Fueron los primeros humanos de la historia que instauraron un sistema de autoridades para hacer frente al caos: una recia estructura familiar y el sistema de ciudad-estado. Examinemos esos tormentosos tiempos.

En primer lugar, los mesopotámicos no se preocuparon tanto por la importancia del sol⁶. El sol no era más que el decorado detrás del cual se escondían otras entidades mucho más problemáticas. El dios más altamente valorado era Anu, dios del cielo. La mayor parte de los problemas venían de arriba, y el cielo lo envolvía todo. Inmediatamente detrás de Anu, en los intereses mesopotámicos estaban los dioses de las tormentas, de la lluvia, de la arena y del viento. El dios que supervisaba estos elementos se llamaba Enlil. Después venían los elementos de la tierra; los dioses Enki y Ninhursaga eran sus responsables.

La clave de los mitos mesopotámicos de la creación y de sus dioses es su excesiva preocupación por los detalles. Si bien algunos de sus principales mitos dominantes contienen parejas de dioses que proceden del agua, probablemente de la fértil confluencia del Tigris y el Eufrates, para producir dioses tales como Anu, los mitos realmente serios se refieren al dios de las tormentas, Enki.

La historia de Enki es extremadamente detallada y representa un esfuerzo por explicar el carácter psicológico de las complejas relaciones humanas. Se puede considerar como la primera teoría de este tipo y está basada en los diferentes entornos de Mesopotamia, una cultura que no

consideró al hombre como el centro del universo. ¿Cómo iban a hacerlo, si todo lo que el hombre intentaba hacer se veía obstruido por el impredecible ambiente en que se encontraba? Condenados a vivir en tal ambiente, de lo que he dicho se sigue que la gente tenía que proponer más teorías para intentar explicar las causas de las cosas y establecer correlaciones entre ellas. Había más teorías porque cada ciudadano tenía diferentes experiencias a consecuencia de la diversidad del ambiente, y cada experiencia tenía su propia explicación. Esta gran diversidad provocaba la necesidad de detalles. Dos personas se encuentran y hablan de la misma calamidad, pero cada una tiene una teoría diferente. Para explicar esta diferencia, proponen detalles distintos. En Egipto no existía tal problema. Todos los egipcios tenían el mismo tipo de experiencia, y una misma serie de interpretaciones podía explicar el hecho de que el sol siempre salga por el Este y se ponga por el Oeste.

Lo que propongo es la idea de que, al igual que los hombres modernos, los humanos primitivos poseían la capacidad de concebir creencias mágicas. Estas creencias derivaban de sus experiencias personales, que a su vez diferían ampliamene dependiendo del clima y del ambiente en que viviesen. Suponiendo que la gente estuviera preparada para plantear cuestiones sobre los orígenes, los datos diarios a partir de los que extraían sus inferencias variaban enormemente; y lo mismo ocurría, por tanto, con la naturaleza de sus ideas sobre la creación.

En el predecible mundo de los egipcios, el hombre era central, los dioses eran buenos y había una acusada tendencia a creer en un dios principal. Al menos así es como elaboraron finalmente su visión del mundo. Sus vidas florecieron y sus nociones de cómo organizar el universo se expandieron.

En el impredecible mundo de Mesopotamia nuestra

especie tenía la oportunidad de desarrollar una visión del mundo mucho más cargada teóricamente. Nada parecía seguirse de los antecedentes excepto mediante el desarrollo de elaboradas teorías. Todo adoptaba un carácter psicológico y se acentuaban los detalles. Los posibles correlatos reales de las primeras causas únicamente podían hallarse en los detalles.

En ambos casos, sin embargo, la capacidad única del cerebro humano y su tendencia a hacer inferencias a partir de los acontecimientos observados es responsable de las diferentes concepciones sobre la creación y, en última instancia, de las creencias personales. Si se proporcionan datos ordenados (Egipto) al sistema de inferencia, éste produce un universo ordenado. Si los datos no tienen un orden, el sistema de inferencia elabora una noción de creación muchísimo más compleja, una noción que resalta el desamparo del hombre. Con todo, un atento examen de la jerarquía de los dioses imaginados en ambas culturas revela que el sistema de inferencia no es ajeno a la idea de un dios supremo. En Egipto era Ptah; y en Mesopotamia, Anu. El sistema de inferencia humano necesitaba la parsimonia.

A partir de este rápido repaso basado en la erudición de otros autores, como es el caso del desaparecido John Wilson, es indudable que comenzamos a vislumbrar los mecanismos psicológicos subyacentes de los que dependen las creencias religiosas. Del mismo modo que el paciente con el cerebro dividido busca una teoría unificada para explicar su propio comportamiento, y al igual que los humanos normales hacen lo mismo para comprender sus acciones personales, los humanos buscan una explicación parsimoniosa y unificada de la lógica que gobierna los asuntos mundanos. La afirmación de que el denominado «politeísmo» es de hecho una forma primitiva de monoteísmo está en consonancia con la visión

que acabamos de exponer. El cerebro humano busca el orden de forma refleja, incluso en el caso de las creencias religiosas.

A pesar de intentarlo, me resultaba difícil leer la historia antigua y seguir creyendo en la hipótesis politeísta. Tanto en Egipto como en Mesopotamia hay una jerarquía de dioses claramente definida. En realidad, dudo que en la historia del hombre haya habido alguna vez algo parecido a una organización no jerárquica. El Politburó de la Unión Soviética tiene un presidente. Anu era el árbitro supremo para los mesopotámicos. Lo mismo es cierto en el caso de los egipcios y en cualquier ejemplo de organización eficaz existente. Tiene que ser así. Está en la naturaleza del proceso de toma de decisiones.

Incluso hoy en día se pueden encontrar elementos politeístas en el monoteísmo del *Homo sapiens sapiens*. Los católicos pueden rezar a un santo, a la Virgen María o al Espíritu Santo. Estos elementos religiosos pueden interceder ante Dios en nombre del devoto, del mismo modo que Khnum-Ra puede hacerlo ante Ra-Atón.

De nuevo quiero poner de manifiesto que nos estamos ocupando del funcionamiento de un mecanismo psicológico universal que, en lo esencial, no ha variado. Conforme se produjo la evolución gradual de las hipótesis sobre las primeras causas, se hizo evidente que tener varios dioses en una cultura era algo difícil de manejar. Sin duda, muchos de estos dioses se desarrollaron de forma independiente dentro de la cultura como diagnósticos diferentes por miembros distintos de esa sociedad. Pero, a medida que avanzó la cultura, fueron gradualmente agrupados en panteones o asambleas, y se identificó un dios supremo. Es evidente que los egipcios fueron aún más lejos con Ptah, e intentaron volver a escribir su historia con voz propia. Una sociedad no puede tener 10 presidentes o 10 dioses. La idea tiene que ser condensada

y el concepto ordenado. En resumen, nuestra especie nunca careció realmente del concepto de monoteísmo.

Esto no significa que el concepto no necesitase ser trabajado. Es evidente que lo era, y Moisés parece haber desempeñado un papel fundamental a este respecto. Durante 40 años se separó de los egipcios, por una parte, y de los sirios, por otra. La idea que Moisés enunció finalmente surgió de una historia muy compleja. Su dios tenía ciertas características fundamentales. En primer lugar, no habría sitio para la idolatría, ni imágenes talladas. Así, Dios le dijo a Moisés: «Yo soy el que soy», que según el profesor Albright significa: «El causa el ser», o «El da el ser a lo que existe». Se trata de la idea del creador de todas las cosas, que no tiene familia y que no habita en un lugar determinado. Es un dios antropomórfico, pero no representable. Dios es bondadoso, le gustan los niños, etc. Moisés abordó estos temas, y ahí comenzó la tradición judeocristiana. Si se considera detenidamente, es una historia de ningún modo menos asombrosa que la de Joseph Smith, el fundador de la secta de los mormones.

En Grecia, mientras tanto, nuestra especie todavía no había alcanzado el nivel monoteísta de Moisés. Aún se estaba ocupando de la cuestión existencial, del mismo modo que lo habían hecho los egipcios y los mesopotámicos. Había dioses para todo. Había una Artemisa de Brauron, de Egina, etc. Los dioses menores ayudaban al pescador, al panadero, al lamparero; otros dioses se ocupaban de la esperanza y la caridad. Llegaron a ser demasiados y, al igual que en las sociedades primitivas, los griegos se encaminaron progresivamente hacia un sincretismo. Zeus era el dios principal, el árbitro final.

De un modo u otro, el sistema divino no fue fácilmente admitido. No mucho después de que se estableciese por completo, los filósofos griegos lo criticaron. En Grecia, algunos hombres antepusieron la razón a las

creencias y propusieron la idea del monoteísmo porque era la más lógica. Como señala el profesor George Boas, en el siglo VI antes de Cristo el filósofo Jenófanes ridiculizó la noción de múltiples dioses 7. Jenófanes apoyó la idea de un solo dios, un dios con muchas de las características del Dios de Moisés.

Boas pone otro ejemplo de teología filosófica tomado del «Himno a Zeus» de Cleantes. El poema es extraordinario por la intensidad de su tono y la semejanza del rango de Zeus con el dios de los profetas.

¡Oh Zeus, gloriosísimo entre los inmortales, polinímico, siempre omnipotente, soberano de la naturaleza, que gobiernas todo según ley,

salve! Todos los mortales te deben alabanza,

pues son estirpe que, en la semejanza del habla, en ti participan,

únicos entre los vivientes que se mueven sobre la tierra.

Por ello te ensalzaré y siempre tu poder pregonaré.

A ti, enroscado en torno a la tierra, este mundo te obedece a donde lo lleves, sometido con gusto a tu dominio.

Subyugado por tu mano invencible tienes al rayo de doble filo, ardiente y siempre vivo.

Pues a golpes tuyos se realizan las obras todas de la naturaleza.

Tú enderezas el Logos universal, que en todas partes mezclado se halla con los grandes y pequeños luceros.

¡Oh tú, que te has hecho tan grande rey soberano del todo!

Sin ti nada se hace en la tierra, espíritu divino, ni en el etéreo polo divino ni en el ponto, si no es cuanto hacen los malvados con su necedad.

Pero tú sabes hacer recto lo torcido y

hermoso lo deforme, y transformas en amable lo odioso.

Así juntaste en uno lo malo y lo bueno, haciendo que haya siempre una razón en todas las cosas.

Los malos, que entre los mortales se apartan de ella, serán

desdichados. Todos desean poseer el bien, pero miran, no oyen la ley universal de dios, aunque obedeciéndole con la mente tendrían vida feliz.

Pero, insensatos, tienden unos a un vicio, otros a otro, otros se dirigen al lucro torpemente,

otros, a la holganza y deleites del cuerpo.

Mas, inclinados al mal, son arrastrados hacia uno y otro lado,

obteniendo lo opuesto de lo que buscan.

Pero tú, Zeus, dador de todo, nube sombría que brillas en el rayo,

libra a los hombres de la triste ignorancia, oh padre, disipándola del alma. Danos lograr el conocimiento, con cuyo apoyo gobiernas todo en justicia,

para que, honrados, te devolvamos el honor, ensalzando siempre tus obras, cuanto quepa en ser mortal; pues nada hay mayor para hombres ni dioses que ensalzar siempre en justicia la ley universal⁸.

Pero había problemas con los dioses teológicos y metafísicos de los griegos. Los dioses no pedían nada al hombre. Todos los griegos monoteístas creían que la finalidad de la vida era lograr la autosuficiencia, llegar a un estado de autarquía. Platón, Aristóteles, los estoicos, todos ellos consideraban que este estado se realizaba de distintas formas, pero en lo esencial estaban de acuerdo respecto a los fines de la vida. Dado que su concepción de la lógica del universo había que hallarla en la lógica misma,

se sigue que la tarea de la vida debería ser librarse de las flaquezas del corazón y de las vicisitudes de la sociedad.

No hace falta decir que los problemas originados por estas diferentes concepciones del monoteísmo y sus consecuencias todavía persiguen a los estudiosos de estos temas. Lo que debe quedar claro es que el hombre primitivo volvió su mente hacia los problemas de las primeras causas; sus ideas evolucionaron a partir de su experiencia personal, que a su vez derivaba del ambiente. Si bien esta procedencia dio lugar a diferencias de relieve en el estilo y en el contenido de las teorías, mi tesis es que el mismo carácter global y común de los datos se organizó según el sistema de inferencia asentado en el cerebro, y por eso el desarrollo de las ideas fue extraordinariamente parecido. Esto hace que la historia humana sea comprensible y no algo raro.

Como consecuencia de este análisis, creo que disponemos de una base racional para explicar por qué las creencias religiosas son tan fácilmente aceptadas en la era atómica. Por debajo de la apariencia superficial de estas diferencias, las creencias comparten una forma común y esa forma es y ha sido siempre completamente aceptable para el pensamiento humano. Todas ellas proponen un universo ordenado y unificado, gobernado por una fuerza lógica superior.

Pero con todo, esta formulación deja pendiente la cuestión fundamental, a saber: ¿Por qué se empeña nuestra especie en tener creencias religiosas? ¿Por qué estamos dispuestos a aceptar creencias, a vivir en base a una teoría, ya se trate de una teoría propia, recibida, o bien adoptada? ¿Por qué nos empeñamos en creer en un orden?

Antes de tratar de responder a estas cuestiones, voy a rebatir las ideas de los lectores que piensan que no necesitan preocuparse por ellas porque están convencidos de que tienen una comprensión aristotélica de los problemas

y actualmente no poseen ninguna de las creencias actualmente disponibles en el autoservicio de la cultura mundial. Estas personas creen que las creencias corrientes son insustanciales actos de fe o, lo que es peor, de ignorancia, y que su puesto está en el trastero del pensamiento humano. Su creencia puede clasificarse, en oposición a una creencia mágica, como racional, pero se trata de una creencia.

He sostenido que nuestra propensión a mantener creencias religiosas procede directamente de la especial capacidad de nuestro cerebro para hacer inferencias, así como de su especial capacidad para aceptar el pensamiento mágico. Además, puesto que llegado a un cierto punto el sistema no puede continuar interminablemente realizando nuevas inferencias sobre la estructura del mundo, tiene que apostar por una de ellas. En el momento en que lo hace, se ignoran los datos sobre las posibles falacias de las suposiciones implícitas en la creencia elegida. Dicho más moderadamente, aumenta el umbral para tener en cuenta información nueva como consecuencia de la insatisfacción natural asociada al no creer. Es desagradable porque sin la creencia en algún tipo de orden se produce una sensación de capricho, de inestabilidad y falta de control. Nuestra especie necesita creer. La creencia sirve de guía, de control y dicta las normas de comportamiento. Es evidente que todos desarrollamos una creencia sobre nosotros mismos. Es fácil imaginar que también necesitamos tener creencias sobre los acontecimientos externos. No importa que se llamen «Cristo», «Mahoma» o «mecánica cuántica», todas son creencias que posibilitan la acción humana.

Un reto fundamental del hombre moderno es, desde luego, cómo trascender las creencias religiosas actuales y avanzar hacia un sistema capaz de lograr la comprensión interpersonal en lugar de la indiferencia o incluso el odio.

Para conseguir esto, el obstáculo más difícil sería tranquilizar a nuestra especie en el nivel extramundano y mágico acerca de la parte que corresponde a Dios y Sus designios y respecto a lo que El piensa sobre el hombre y sobre lo que el hombre debería hacer para complacerLe. Cada religión tiene su propia historia al respecto, su propia descripción del comienzo. La mayoría de las personas religiosas está dispuesta a morir por esta parte mágica, no sólo para mantenerla intacta, sino también para difundirla.

Quizás la esperanza de cambio rápido proceda del nivel sustantivo. La religión, en conjunto, impone preceptos bastante buenos para la vida social. Ama a tu prójimo, comparte, sé bondadoso, no codicies los bienes mundanos de tus amigos, etc. Todas las religiones suscriben más o menos estas opiniones, y para regir una sociedad todas estas ideas son muy útiles y positivas. Naturalmente, lo que hace que la gente esté dispuesta a tener en cuenta la parte mágica es el hecho de que estas ideas esenciales generales sean tan razonables. Después, mediante el proceso de valoración del que he hablado, el aspecto mágico de la creencia adquiere una importancia cada vez mayor. Si los creyentes pudieran llegar a darse cuenta de que la diferencia que existe entre sus programas esenciales no vale ni diez céntimos, quizás entonces podrían comenzar a ver la parte mágica como lo que es.

Los estudiantes siempre plantean cuestiones inquietantes en torno a la pertinencia de las cosas. Cuando se les presenta una nueva forma de pensar sobre un tema, los mejores preguntan inmediatamente: «¿Qué significa eso?» Cabría esperarse que fuera el profesor el que, desde su sabiduría, planteara esa cuestión. Sin embargo, el buen profesor ha aprendido a ser escéptico. Sabe que en la vida es realmente poco lo que llega a explicarse. El tipo de datos nuevos que la gente cree que debería ponernos en un estado de desequilibrio no merece la pena tenerse en cuenta. Explicamos lo que podemos, no lo que queremos. En consecuencia, la mayor parte de las cosas cae por su propio peso. Así es como debe ser.

Al mismo tiempo, es precisamente la espléndida y esperanzadora actividad de cuestionamiento desarrollada por cada nueva generación lo que aporta nuevas energías. Después de una charla sobre temas científicos, los estudiantes preguntan: «¿Qué tiene que decir la ciencia sobre

nuestra cultura?» Yo respondo diciendo cosas como: «No mucho.» Ellos aseguran que eso no puede ser, y yo les pregunto que por qué no. Todo científico del cerebro que a lo largo de la historia haya hablado del significado de la neurociencia para cuestiones más importantes, ha quedado como un necio. Los estudiantes aseguran que diecisiete estudios de cine rechazaron E.T., y que quizás mis opiniones triunfen. Entonces les propongo que vayamos a tomar algo y solemos quedarnos hablando hasta las tantas. Varios estudiantes me han sometido a una especie de entrevista, y las conversaciones suelen desarrollarse más o menos como sigue:

ESTUDIANTE (E.): ¿Cuál es su opinión sobre la relación entre la ciencia del cerebro y los procesos sociales?

M. S. G.: Se trata de un juego peligroso. El hecho de que haya hecho algunos experimentos en mi vida no me cualifica automáticamente para hablar de los procesos sociales desde una perspectiva psicobiológica. Los físicos nunca hacen tanto el ridículo como cuando hablan de biología, y no digamos nada si hablan de temas sociales. Es de lo más pretencioso.

En general, creo que los científicos básicos deben ceñirse al laboratorio. Nuestro juego consiste en practicar el método científico, y tratar de ajustar los acontecimientos de la vida a una fórmula completamente racional es arriesgado. Dejemos que cada cual tenga su idea social preferida. La mayor parte de las ideas sociales están tan alejadas de lo puramente racional que tienen vida propia, y nada de lo que yo diga puede afectar directamente a esas cuestiones. Tales ideas existen a otro nivel de organización, un nivel que trasciende el análisis científico actual.

E.: Así que su idea es quedarse en el laboratorio y dejar las cuestiones importantes sobre nuestra existencia a gentes como Ronald Reagan y Mario Cuomo. Usted piensa que la política es el arte de lo posible y todo eso. No es otra cosa que un conglomerado de intereses especiales. Apuesto a que usted cree que en la práctica se trata de algo que raya con lo ateórico. Naturalmente, no es la clase de asuntos con la que los científicos quieran mancharse las manos. Bueno, sabemos que usted no piensa realmente eso, así que continuemos.

M. S. G.: Claro, pero al decirlo puedo hacer que mis amigos sean un poco más tolerantes con las ideas que esbozo sobre algunos procesos sociales. Puedo hablar del nexo de unión entre la ciencia y la política si partimos de un problema. ¿Por qué tiene que ganar más dinero un profesor que un conserje? Tales diferencias económicas se producen, independientemente del tipo de cultura de que se trate, y aun cuando sean contrarias a muchos principios culturales. Se trata de un tema espinoso. Analicemos el problema. Jones, un excelente conserje, realiza a la perfección su trabajo; trabaja al máximo de sus capacidades, y el trabajo se ajusta perfectamente a sus posibilidades biológicas y culturales. Además, posee cualidades morales como la bondad, la honestidad y la responsabilidad, rasgos que por lo general son difíciles de encontrar en cualquier grupo. Jones gana 11.000 dólares al año más complementos.

Cada mañana, al ir a trabajar, Smith el físico se percata de la existencia de Jones al darle los buenos días. Smith tiene una poderosa razón social para tener un aspecto excéntrico: es realmente «distinguido». De hecho, Smith es un físico nuclear muy trabajador. Además, trabaja según sus capacidades biológicas y culturales. Smith gana 52.000 dólares al año. ¿Cuál es la base racional de esta diferencia de salarios entre las dos profesiones?

E.: ¿Cree usted que las ciencias del cerebro pueden dar respuesta a una cuestión como ésta?

M. S. G.: Creo que, si los científicos del cerebro no pudiesen responder a esta cuestión en algún momento de

la evolución de sus conocimientos, entonces no sólo ignorarían los principales fenómenos de nuestra cultura, sino que trabajarían en un vacío moral. Pero analicemos más detenidamente el problema y fijémonos en uno de los aspectos más singulares de Jones y Smith. Si medimos el tiempo que cada semana dedican a trabajar, comer, dormir, hacer el amor, ir y venir del trabajo, ver la televisión, jugar con los hijos, etc., probablemente descubriremos que no hay mucha diferencia entre ellos. Se da el caso, además, de que tanto a Jones como a Smith les gustan los filetes, los helados, el vino, las vacaciones, las lanchas rápidas, las grabadoras, las bicicletas, la propiedad privada, los hoteles de veraneo y otras innumerables comodidades materiales asequibles en nuestra cultura. ¿Por qué no puede nuestra sociedad estar montada de tal forma que todos tengan las mismas posibilidades de acceder a estas cosas? Después de todo, Jones no tiene la culpa de no entender las leyes de Kepler.

E.: Hay un millón de explicaciones posibles de tales realidades. Muchas personas buscarían explicaciones de orden económico, otras de orden genético. ¿Qué motivo hay para plantear esta cuestión? Cada cultura puede inventar una docena de razones para explicar por qué las cosas son como son.

M. S. G.: No he planteado este problema con la finalidad de buscar respuestas que describan la existencia real de esas prácticas en la cultura. No quiero tener en cuenta las explicaciones cotidianas que versan sobre realidades económicas actuales que son evidentes, como las propiedades de oferta y demanda de las personas especialmente cualificadas. Tales factores desempeñan un papel, pero no atañen a la cuestión que he planteado. Lo primero que hay que entender es la realidad psicológica de las razones por las que el igualitarismo nunca parece funcionar. La pregunta que he formulado profundiza en esa realidad, y quiero saber si podría existir una cultura que genere realmente esa igualdad. Ninguna lo hace, ¿pero podría hacerlo alguna? ¿Y qué creencias tendríamos que tener sobre nosotros, los humanos, para que fuese factible una sociedad como esa? Incluso en el caso de que una sociedad concediese los mismos bienes a Jones y a Smith, ¿estaría Smith dispuesto a aceptar una distribución igualitaria? Si fuera así, creo que habría muy buenas razones para establecer una sociedad que aspirase a tales metas. De uno u otro modo, merece la pena conocer la respuesta, una respuesta que es de sobra conocida. La cuestión es: «¿Por qué los miembros de nuestra especie se comportan de esta manera?»

E.: Pero hay sociedades que sí distribuyen los bienes de acuerdo con las necesidades y de forma mucho más igualitaria. Ese es el caso de las naciones comunistas.

M. S. G.: ¿De verdad? Consideremos el caso de la Unión Soviética. Los soviéticos creen aparentemente en la distribución igualitaria. En su mundo no reina la abundancia, pero tienen lo suficiente de todo, de forma que todos tienen las mismas posibilidades de acceder a las tiendas sociales. Sin embargo, me consta que en realidad no es así. Estuve allí y pude observar de primera mano a un Jones y a un Smith, y comprobé las diferencias entre la teoría y la práctica.

El camarada Smith era miembro del partido, lo que lo situaba de forma inmediata entre los elegidos. Podía viajar, lo que significaba que tenían confianza en él, y podía hablar incansablemente de las virtudes de una sociedad marxista. Smith era una persona de gran atractivo, encantadora, el tipo de persona que te recuerda a los granjeros del medio Oeste. Los rusos son los únicos europeos que parecen actuar y hablar como los americanos, algo que resulta muy desconcertante. En su presencia, uno no tiene ningún sentimiento de inferioridad cultural, como

ocurre cuando hablamos con un francés. Son gentes que no tienen inconveniente en invitarte a un vodka, que te dan una comida increíblemente mala y te cuentan historias hasta altas horas de la madrugada. Con todo, después del vodka prefieren saborear un coñac francés, que no suele faltarles. Es decir, que no suele faltarle a Smith. De hecho, la carne, la leche, el calzado y otras necesidades están fácilmente al alcance de Smith, pero no de Jones. Jones tiene que conseguir sus productos donde pueda encontrarlos. En Moscú pueden verse millones de Jones yendo y viniendo con grandes bolsas vacías. Jones no puede saber cuándo va a estar disponible un producto, si en la carnicería habrá o no carne, y en la zapatería zapatos. Si de vuelta a casa tiene la suerte de que la tienda tiene un producto, se pondrá a hacer cola en medio del intenso frío para obtener algo que Smith siempre tiene a su alcance. Jones espera poder ir a casa con alguna hamburguesa en su bolsa. En comparación con Smith, Jones no tiene nada.

Smith está obsesionado por la necesidad de alcanzar un nivel de vida todavía mejor. Sin saberlo, me vi implicado en una enrevesada trama para adquirir ciertos artículos para él. Después de esto, sonreí y le dije: «Me parece que usted no cree realmente en eso de la igualdad, del mismo modo que William Sloane Coffin no cree verdaderamente en Dios.» Eran las dos de la madrugada y habíamos tomado mucho coñac y nos habíamos reído mucho. Sus ojos se estrecharon y me dijo: «No debe olvidar que soy un ciudadano soviético.» Luego se nublaron sus ojos y al poco rato se acabó la fiesta. No es una historia nueva. En realidad, no conozco a nadie que no cuente lo mismo después de visitar Rusia.

E.: De manera que usted piensa que en un grupo social la necesidad de individualizarse existe con independencia de las creencias sociales de una cultura.

M. S. G.: Ocurre en cada uno de los extremos de los escalafones sociales y económicos. Pensemos en las comunidades opulentas. La sociedad ha repartido inmensas riquezas a cada uno de sus miembros. Considerada a la luz de este hecho, esa comunidad constituye el sueño socialista. La cuestión es: ¿cómo es la vida en circunstancias tan irreales?

Todos los informes señalan que nuestra especie es fiel a sus viejos trucos. La familia A trata de tener un coche mejor que el de la familia B. La adquisición de productos que no son útiles es algo frecuente y, según parece, se pretende lograr una estúpida superioridad social en todas las dimensiones sociales y materiales. En resumen, en este reino de la abundancia, los miembros de nuestra especie tratan por todos los medios de diferenciarse de sus vecinos. Las personas se esfuerzan por tomar decisiones que les permitan expresarse de forma independiente y establecer diferencias entre ellas y sus vecinos. La idea de ir en el mismo barco que el vecino resulta inaceptable. Miremos las cosas desde el otro extremo de la escala.

Pensemos en los !Kung, que a duras penas se las arreglan para sobrevivir en el desierto del Kalahari. El antropólogo Richard Lee ha escrito sobre esta pequeña sociedad y hace algunas observaciones interesantes. Aquí, en un medio donde no se pasa del nivel de subsistencia en comparación con el opulento suburbio, los !Kung se sientan en torno al fuego y se quejan de determinados miembros de la comunidad que no reman, que no se muestran corteses y que no son humildes. En resumen, sus comentarios ad hominem crean un contexto para que los !Kung se diferencien entre sí. La idea de que todos son iguales, tienen lo mismo y sirven para lo mismo es tan extraña para los !Kung como para el resto de los miembros de nuestra especie.

Y lo mismo ocurre en todo el mundo. Nuestra especie

posee propiedades mentales que son comunes a todos sus miembros, y si bien se expresan de forma diferente de una cultura a otra, esta diferencia de expresión no anula el hecho de que el cerebro del *Homo sapiens sapiens* dispone de ciertos algoritmos para la acción. Creo que no tener en cuenta esta realidad da al traste con la psicología personal y social de nuestras vidas.

- E.: De modo que usted dice que pretender diferenciarse de los demás, lo cual lleva frecuentemente a comportamientos codiciosos que suponen el fin de las ideas igualitarias, es un comportamiento universal que se da en todas las culturas humanas y en todos los sistemas sociales. No voy a discutirle que el modo más fácil de lograr la diferenciación es adquirir más bienes o bienes diferentes. Pero su tesis podría aceptarse o rechazarse sin necesidad de hacer referencia a la organización del cerebro. ¿Es necesario introducir la ciencia del cerebro?
- M. S. G.: Tiene razón cuando dice que estas afirmaciones sobre la universalidad de la especie pueden hacerse como algo relativo a la especie sin más, y no pasando de ahí. Pero ese no es el juego a que les gusta jugar a los científicos. Su aspiración en todo momento es hallar proposiciones que sean ciertas y válidas siempre; y si uno descubre un hecho como este, entonces todos tenemos que adaptarnos a la realidad del mismo. Los teóricos sociales pueden discutir interminablemente. El científico natural, en cambio, quiere conocer los hechos de nuestra especie para poder elegir entre las alternativas que existen en la teoría social, y en mi opinión la ciencia del cerebro está descubriendo más acerca de nuestra verdadera naturaleza que la mayor parte de las disciplinas. Una vez más, soy partidario de ese punto de vista. Además, usted fue quien quería hablar del modo como se relaciona la ciencia del cerebro con los procesos sociales.
 - E.: De acuerdo. ¿Por qué piensa que el modo como

está organizado el cerebro humano lleva a nuestra especie a buscar la diferenciación, es decir, una identidad independiente?

M. S. G.: Esta cuestión está en relación con el intérprete del cerebro izquierdo, que siempre anda ocupado clasificando los comportamientos que produce el gran número de módulos mentales que poseemos. El cerebro izquierdo genera de forma constante y refleja teorías para explicar los acontecimientos externos e internos que ocurren en torno nuestro. Debido a esa estructura, siempre atribuimos causas a todo lo que nos pasa.

Si resulta que vemos que las cosas no nos salen bien tan a menudo como debiera, nos gusta hallar causas externas que expliquen nuestra insatisfacción. Como ya he dicho, si una persona de color verde aparece en mi ambiente y yo soy una persona de color azul, ya he encontrado alguien a quien echarle la culpa. Este es el mecanismo mediante el cual se forma la mayor parte de nuestros absurdos prejuicios, pero forma parte de la vida y está siempre funcionando. He oído decir que si el pequeño estado de Israel obtuviese una paz duradera con los árabes, podría autodestruirse porque se desencadenarían los prejuicios instintivos que existen actualmente entre todos los grupos sociales que constituyen Israel. Nunca en la historia del mundo ha habido una cultura heterogénea que haya vivido en paz.

En cualquier caso, creo que este mismo mecanismo funciona en las relaciones individuales. El señor X tiende a pensar que el señor Y es la causa de que no se sienta completamente satisfecho. Puesto que vivir bien es la mejor venganza, el señor X se esfuerza por adquirir cosas que el señor Y no tiene. Las acciones del señor X pueden fomentar estos mismos procesos en el señor Y, y la situación continúa en espiral. Aquello a lo que aspiran el señor X y el señor Y está influido por sentimientos estéticos in-

trínsecos y por consideraciones intelectuales, así como por los efectos, siempre presentes, del ambiente.

Por tanto, ¿cuál es la razón por la que el conserje recibe un salario diferente al del físico? A mi modo de ver, no hay razón a priori alguna por la que tenga que ser así, si bien siempre ocurre de ese modo; y la razón, independientemente de la estructura social y del período histórico de que se trate, puede encontrarse en esos principios del cerebro.

E.: Bien, tratemos de estos principios en concreto. Usted habla de cerebros izquierdos y cerebros derechos. Habla del libre albedrío y de la importancia de su presencia ilusoria para el desarrollo de las creencias humanas, que a su vez nos hacen únicos y diferentes del resto de las especies del reino animal. ¿Cómo puede compaginarse todo esto? ¿Qué significa? ¿De qué sirve tener conocimiento de ello?

M. S. G.: Antes de hablar de estos temas, quiero estar seguro de que se entiende la razón por la que pienso que es importante reconocer nuestra necesidad de individuación. Yo sostengo que tales necesidades constituyen lo que podría denominarse «las características impenetrables de la especie». No hay nada en la cultura que pueda diluir o neutralizar la fuerza de estas necesidades, y en consecuencia hay que reconocerlas y aceptarlas.

E.: Esa es una afirmación categórica, y me gustaría saber cómo ha llegado a ella.

M. S. G.: De acuerdo. Ha sido un lugar común pensar que nuestro yo cognitivo consciente está organizado y existe de tal forma que nuestro sistema lingüístico siempre está completamente al corriente de todos nuestros pensamientos. Sabe en qué lugar de nuestros cerebros puede encontrar la información que hemos almacenado y participa en todos los cómputos y actividades de resolución de problemas que realizamos. De hecho, el intenso

sentimiento subjetivo de nosotros mismos que todos poseemos consiste en creer que somos un agente consciente, individual y unificado, que controla los acontecimientos de la vida con un propósito singular e integrado.

E.: Eso es lo que más o menos nos han enseñado.

- M. S. G.: Y no es cierto. Los estudios del cerebro demuestran que nuestro sistema cognitivo está organizado de forma modular. Eso significa que en el cerebro hay un gran número de sistemas relativamente independientes que computan los datos procedentes del mundo exterior. Los sistemas independientes pueden comunicar los resultados de esos cómputos al sistema verbal consciente, o pueden reaccionar controlando el cuerpo y desencadenando comportamientos reales. En el cerebro humano hay una capacidad especial, un sistema especial, localizado en el cerebro izquierdo, que interpreta los distintos comportamientos de esos módulos y, mediante dichas interpretaciones, forma las creencias. El cerebro izquierdo construye constantemente teorías sobre las relaciones causales entre los acontecimientos elementales que ocurren en el interior y en el exterior de nuestras cabezas. Estas interpretaciones las realiza el cerebro izquierdo porque sólo él tiene la capacidad de hacer inferencias.
- E.: ¿Quiere usted decir que los animales no tienen la capacidad de interpretar su comportamiento? Un perro puede aprender rápidamente a no entrar en el jardín del vecino.
- M. S. G.: Mire, es necesario distinguir entre las asociaciones aprendidas y la capacidad de hacer inferencias abstractas. Todas las especies de animales pueden hacer lo primero, pero sólo el hombre puede hacer inferencias. Hacer una inferencia significa ir más allá de la información dada y comprender las relaciones entre los elementos.

Espero haber dejado claro que esta capacidad de hacer

inferencias, que es el sistema de que se nutre el intérprete del cerebro izquierdo, es un sistema que existe independientemente del sistema lingüístico. El lenguaje informa de las actividades del mismo, pero no es el lenguaje en cuanto tal el que realiza las inferencias. Esto supone otro argumento a favor del cerebro modular.

E.: ¿Cómo se relaciona el cerebro modular y sus sistemas especiales para hacer inferencias localizados en el cerebro izquierdo con las ideas que usted tiene sobre las actitudes sociales, sean cuales sean éstas? ¿Se puede establecer alguna conexión entre ambas cosas?

M. S. G.: Creo que sí. Cuando mis amigos y colegas se enfrentan a la cuestión de cómo sus ideas acerca de la especie humana les pueden llevar a estar a favor o en contra de un tema social, tienen que admitir que no tienen teorías definidas sobre la naturaleza humana; de hecho, la mayoría de nosotros vamos tirando día a día sin tener una teoría articulada al respecto. Con todo, estamos convencidos de que tenemos ciertas creencias acerca de la naturaleza humana que nos hacen adoptar posturas apasionadas a favor o en contra de las cuestiones sociales.

¿Cuáles son esas teorías que determinan nuestra postura ante determinadas decisiones sociales? ¿Apoyan las ciencias del cerebro y del comportamiento una perspectiva determinada en contraposición a otra? Supongamos que se propone el programa social X y que se convoca al electorado para que lo vote en un referéndum. ¿Qué creemos que sabemos sobre la naturaleza humana para pronunciarnos a favor o en contra de tal programa?

Hay dos creencias implícitas fundamentales respecto a la mejor manera en que pueden responder los humanos a los retos sociales. La creencia principal de nuestra cultura es la que denomino actitud «externalista». Consiste en creer que, para manejar los múltiples problemas de esta vida —problemas considerados tan complejos que se piensa que están fuera del alcance de la capacidad del individuo para afrontarlos—, la sociedad debe crear estructuras, departamentos e instituciones que ayuden a los individuos a manejar sus asuntos. Las cosas y las personas pueden organizarse mediante la administración externa de las circunstancias y los bienes. De acuerdo con este modo de ver el problema, se supone que los humanos responden de forma muy positiva a estas ayudas de procedencia externa. Esta perspectiva parte de ciertas suposiciones sobre la naturaleza humana y, por tanto, también sobre la organización del cerebro, que más adelante abordaré.

La otra actitud es la que denominaré «internalista». Esta forma de abordar el problema reconoce que las creencias personales son las guías apropiadas para controlar los actos personales, y que los grupos sociales funcionan mejor haciendo recaer la responsabilidad sobre la persona. Una idea fundamental es que la responsabilidad de la acción es responsabilidad individual, y no de ningún sistema social. La estructuración de los sistemas sociales de modo que se elimine el carácter central de la persona, que se percibe a sí misma como un agente que actúa libremente, se convierte en el impulso destructivo de una cultura orientada externamente.

Quienes mantienen una actitud internalista tienden a oponerse a que se den respuestas globales a problemas individuales. Tienden a pensar que, a la larga, los humanos están mejor dotados para afrontar individualmente las tensiones y los esfuerzos de la vida diaria, y que construir sistemas sociales de apoyo que absorban el carácter individual de la responsabilidad personal y lo transfieran a instituciones externas es dañino para la especie. He aquí un sencillo ejemplo: en lugar de tener barrenderos, las personas deberían tener interiorizado el valor de no ensuciar las calles. Además, los internalistas tenderían a creer

que, una vez contratado un barrendero, queda seriamente minado el mecanismo mediante el cual se inculcan valores humanos tales como el sentido de la limpieza.

Es evidente que la dicotomía externalista/internalista no agota toda la cuestión, ni capta toda la sutileza de las creencias humanas tácitas que intervienen en la aprobación o desaprobación de las acciones sociales. Con todo, sirve como una descripción más o menos exacta de las suposiciones sobre la naturaleza humana que la mayor parte de nosotros tendemos a hacer antes de optar por una opinión social.

E.: ¿Puede decirnos más? ¿Cómo funciona un externalista?

M. S. G.: Desde luego. Jane y Bob dan problemas en el colegio. Una solución externalista sería enviarlos a un asesor escolar. Si una mujer se ve acosada, que vaya a un centro de mujeres. Si los granjeros productores de leche no obtienen los beneficios que consideran adecuados a sus inversiones, deben acudir a la asociación de granjeros para presionar e intentar beneficiarse de medidas especiales. Harry no encuentra trabajo; es profesor y los únicos trabajos disponibles son de repartidor, pero a Harry no le agrada mucho la idea de perder estatus, así que lo mejor es que vaya a una oficina de empleo. En nuestra cultura actual siempre hay una institución, un colectivo de ayuda o un sistema de apoyo emocional para cualquier problema concebible. En cierto modo, esto podría interpretarse como una hermosa señal de la humanidad y solicitud que adornan a nuestra cultura. Algunos podrían considerarlo como una especie de respuesta culpable de nuestra cultura a la opulencia reinante, aunque otros lo verían como la expresión de los intereses especiales de un colectivo.

Renuncio a entrar a fondo en estos puntos de vista más psicodinámicos y sociológicos, ya que, si los tuviera en cuenta, en muy poco tiempo me podría encontrar en un atolladero de hipótesis, cada una dependiente de las suposiciones de otra. Baste con decir simplemente que las personas civilizadas, independientemente de las creencias que profesen, quieren ayudar a los desfavorecidos, razón por la cual se establecen los mecanismos sociales. No dudo que tanto los defensores del punto de vista externalista como los partidarios del internalista son igualmente caritativos. La cuestión estriba en cómo lograr el objetivo sin violar los principios biológicos y psicológicos de la especie. En este contexto, me voy a permitir identificar las suposiciones psicológicas que subyacen a la noción de que (a) ofrecer un sistema externo de apoyo es una buena solución, y (b) que ese tipo de sistemas es adecuado al modo como está constituida la naturaleza humana.

La principal suposición de la actitud externalista es, ante todo, que el organismo responde a las condiciones de dependencia respecto a las recompensas de origen externo y, además, que la mayor parte del comportamiento humano puede explicarse teniendo en cuenta las condiciones ambientales de los individuos. Un ambiente puede estar estructurado según una compleja trama de recompensas dispuestas estratégicamente a lo largo y ancho del paisaje, de tal forma que todas las eventualidades estén previstas y el orden se mantenga. Esta es la manera en que suelen exponerse las ideas conductistas, y en la actualidad hay un gran número de programas sociales elaborados conforme a este espíritu. El externalista minusvalora los conceptos de responsabilidad personal, y está dispuesto a permitir que la responsabilidad sea función de los sistemas institucionales. El externalista considera el concepto de responsabilidad personal como un constructo ilusorio y carente de significado o valor. Según este enfoque reduccionista, los humanos están irrevocablemente unidos al ambiente físico que les rodea. Dado que es el ambiente

el que impone los castigos y las recompensas a los individuos, es bueno, e incluso preferible, para la estructura social que no sea el individuo la entidad responsable. ¿Se acuerda de nuestra discusión sobre la motivación intrínseca?

Las recompensas que tienen una motivación externa no son efectivas para controlar el comportamiento. Hay algo en la conciencia humana que interviene y dirige el comportamiento. Se trata de algo interesante: esa «sustancia», esas propiedades mentales de la mente humana que son las que tratamos de conocer más a fondo. Mi opinión no es que los poderosos efectos del refuerzo carezcan de implicaciones interesantes para la comprensión del comportamiento, sino que su campo de acción es limitado. No tienen que ver ni con las dimensiones más interesantes de la conciencia humana ni con los principales descubrimientos de las ciencias psicológicas y del cerebro durante las dos últimas décadas.

E.: ¿Qué hace, entonces, un internalista?

M. S. G.: Susan pierde su billete del aparcamiento después de haber aparcado durante una hora solamente. Está convencida de que todos tenemos que pagar nuestros errores, de modo que no pretende un trato especial; paga un día completo. Bill pierde su empleo; encuentra otro y desarrolla nuevas habilidades. La abuela se vuelve senil y la cuidan los hijos. Un licenciado universitario quiere que su supervisor le haga un esquema para su proyecto de tesis; Mike le dice que busque otro director. Esta es la postura de las personas con una visión internalista de las cosas. Uno reacciona a los problemas que se le presentan recurriendo a los valores que ha ido interiorizando durante toda su vida y que acentúan lo más posible la gestión y la responsabilidad personales. Una noción clave de este enfoque es que, cuando la gente se hace responsable de sus propias decisiones y acciones, se

vuelve extraordinariamente capaz de responder a las sorpresas ambientales.

Pero, cuando la responsabilidad es asumida tácita o explícitamente por una institución social, las personas comienzan a adoptar comportamientos antisociales, el concepto de responsabilidad personal se pervierte y, de hecho, el bienestar social general se desmorona. En lugar de enfocar la vida con una actitud de colaboración, el juego de vivir se convierte en un ardid que está estrechamente ligado al aumento del consumo personal. Esto les ocurre tanto a los ejecutivos como a los pobres de los suburbios. El ordenamiento excesivo da lugar a la respuesta antisocial consistente en el auto-engrandecimiento.

El internalista cree que, cuando los individuos son relevados de la responsabilidad de dirigir sus actos, la acusada percepción que tenemos de ser organismos que actúan libremente inevitablemente se pone de manifiesto sólo en la acumulación de bienes y servicios para el bienestar personal, sin tener en cuenta el coste social que esto supone. El internalista cree que los programas externalistas producen precisamente efectos contrarios a los buscados.

De acuerdo con el internalista, nuestra especie debe aprovechar al máximo su atributo emancipatorio más importante: la capacidad de hacer inferencias que van más allá de las relaciones inmediatamente percibidas, y la capacidad de formar creencias mediante este sistema generador de hipótesis. Y, puesto que las creencias se forman por medio de comportamientos reales, el manejo de las recompensas culturales es sumamente importante para el funcionamiento de una sociedad saludable. Esta forma de considerar el problema puede generalizarse hasta el punto de sugerir que las sociedades están mejor organizadas y son más viables cuando disponen de un nivel mínimo de organización centralizada. Las sociedades funcionan me-

jor cuando las personas son responsables personalmente de sus acciones.

La principal suposición presente en la actitud internalista es que aquellas creencias personales que cabe considerar que se han alcanzado libremente posibilitan la formación de principios internos, los cuales influyen a su vez en las respuestas concretas que da una persona al castigo y a la recompensa externa. En la mente humana, por tanto, existe lo que podría denominarse un constructo de orden superior que tiene la libertad de pasar por encima de una respuesta humana a las condiciones ambientales.

La investigación que he descrito demuestra que ciertas áreas cerebrales específicas localizadas en el hemisferio izquierdo de la mayor parte de los humanos generan hipótesis relativas a las acciones independientes en que se embarca una persona como consecuencia tanto de condiciones externas como internas. Estas hipótesis que el individuo produce sobre su propio comportamiento disfrutan de un estatus especial y pueden, a su vez, modular o facilitar futuras respuestas comportamentales.

Según mi modelo, el cerebro está construido modularmente de tal forma que los módulos concretos serían libres de responder literalmente a las contingencias ambientales. No obstante, un sistema cerebral construido de forma modular necesitaría, además, un intérprete para explicar los distintos comportamientos producidos por los módulos en momentos distintos, y para que el ser humano pueda construir una teoría unificada del yo, actividad que la mayoría de nosotros ha realizado. Resulta que el cerebro está organizado precisamente de esa forma.

E.: Puesto que todos los seres humanos poseen cerebros humanos, ¿por qué el módulo intérprete no interviene neutralizando en todos nosotros el interés por las recompensas y los castigos como parece hacerlo en el caso de las personas que sostienen el punto de vista internalista? Ya conozco su opinión sobre los internalistas. Se trata de un tipo de personas que aprovecha las especiales características de su cerebro y permite que las creencias que se forman de un modo natural en todos nosotros se conviertan en una guía interna para la acción. Tratan de no embarcarse en actividades meramente en función de la recompensa externa o el miedo al castigo. Las creencias trascendentales que ha formado el intérprete del cerebro izquierdo guían el comportamiento, ¿no es así?

M. S. G.: Ya queda menos para encontrarnos. Lo que yo digo, por supuesto, es que, si examinamos cuidadosamente a los humanos, todos se comportan de hecho del mismo modo. Las creencias formadas por el intérprete del cerebro izquierdo y que ordenan nuestros comportamientos se dan tanto en el internalista como en el externalista. No hace falta decir que estos procesos también se dan en las personas sumamente dependientes de los programas sociales externos. Esta es la razón por la que es tan peligroso construir un ambiente artificial y ad hoc. El módulo intérprete tiene que dar sentido a ese mundo tan extraño, y las creencias sobre la naturaleza de las cosas que surjan de ese ambiente serán bastante raras. ¿Ha oído hablar alguna vez del derecho a la seguridad social, es decir, el derecho a recibir asistencia social?

Suele decirse que la mayor parte de los programas sociales son un desastre. La existencia de programas que únicamente se ocupan de los síntomas da lugar a que ocurran comportamientos extraños que llegan a tener un efecto sumamente poderoso cambiando ciertas creencias personales socialmente necesarias. Creencias tales como la responsabilidad individual, el comportamiento cooperativo, la generosidad, la confianza y muchísimas más llegan a pervertirse.

No conozco las razones por las que los externalistas no lo ven así. La razón por la que se empeñan en propo-

ner continuamente programas externos con las indiscutibles consecuencias antisociales que conllevan al transferir la responsabilidad de las acciones del individuo a la sociedad es otro problema. Tiene que ver con un elitismo latente y, a veces, no tan latente. Pero no vamos a entrar en ello.

E.: La mayoría de los que practican el externalismo no sabe nada de todo esto. Y los que lo saben dicen que el coste personal que supone para el individuo es el precio que hay que pagar por haber resuelto el problema original. La cuestión es muy simple: el externalista ve un problema social y quiere ayudar a resolverlo. Esta actitud consiste en decir: «Somos ricos y no queremos sentirnos culpables por eso, así que pongamos el dinero y los burócratas que sean necesarios para resolverlo.» Yo puedo compartir esta postura principalmente porque nunca tengo claro lo que haría el internalista cuando es evidente que hay que hacer algo.

M. S. G.: Usted quiere hacer algo práctico, aun cuando aquello por lo que yo abogo es por un reordenamiento de la visión conceptual de los humanos de modo que los futuros legisladores se vuelvan sensibles a la naturaleza real de nuestro ser. Quiero acabar con esa tendencia al externalismo que nos persigue a todos. Pero me doy cuenta de que usted quiere algo concreto. Bien, entonces permítame retomar el problema desde arriba.

En mis momentos de mayor euforia diría que las ciencias del cerebro y del comportamiento han avanzado mucho en el conocimiento de los mecanismos responsables de la singular propensión de nuestro cerebro a formar creencias y evaluarlas. Una consecuencia de este proceso para los humanos es que, gracias a que tenemos creencias, somos libres de suprimir las respuestas inmediatas a los beneficios y a las pérdidas a corto plazo deparados por el ambiente. Esta característica del cerebro humano con-

dena a la especie a ser eternamente ingeniosa y resistente a la regulación ambiental. Cuanto más regulado sea el ambiente, mayor será la tendencia a que la especie renuncie a participar responsablemente en la estructura social y se muestre exclusivamente interesada en los beneficios personales.

Esta misma capacidad de la especie para formar creencias es la que permite la aparición de ciertos comportamientos esenciales exclusivos de ella, comportamientos como tener en cuenta el futuro, planear el presente y otros que trascienden la necesidad de vivir en el estrecho límite del aquí y ahora. Sin embargo, estas dimensiones tan importantes de la cultura humana se producen de forma positiva únicamente cuando los humanos viven en una sociedad regulada lo menos posible, y cuando los individuos son considerados responsables personalmente de sus acciones. Cuando los humanos funcionan en un contexto social muy regulado, esa capacidad exclusiva de la especie humana se orienta hacia el yo y se instala en el bienestar personal. La percepción humana, siempre presente, de la acción «voluntaria», de la responsabilidad personal, se reduce y cae a niveles provincianos.

Defiendo, por tanto, un punto de vista sumamente contraintuitivo. En mi opinión, una cultura se hace más solícita y humana cuanto más se consideren sus ciudadanos parte de los problemas a los que se enfrentan en su vida. La única forma segura de que se identifiquen con tales problemas es estructurar una cultura en la que los ciudadanos hagan frente a los problemas de modo individual.

E.: Se trata de una perspectiva muy general. ¿Cómo se traduce en términos concretos?

M. S. G.: No hay nadie entre nosotros que no desee llevar una vida exenta de problemas. Mi primera reacción ante el hecho de que una institución social se ocupe de un

problema es de aprobación. Una vez que haya nuevas instituciones sociales que solucionen algunos problemas, lo que espero es que continúen haciéndolo. Pero la administración comienza súbitamente a sufrir retrasos. Otros programas en curso cuestan mucho más de lo previsto y no funcionan eficazmente. La gente se aprovecha de los mismos. Las personas no tratan a una institución igual que a un amigo, y nadie parece capaz de dar con el origen de esta actitud, pues todas las investigaciones producen los mismos resultados: el problema está en otra parte. La cultura ha creado instituciones que tienen vida propia y siguen adelante independientemente de los problemas para los que se fundaron. Pero la cultura tiene que ceder ante el público exigente que ahora espera que se solucionen todos los problemas mediante instituciones externas, y en lugar de corregir lo que esencialmente es incorregible, se insiste en solucionar los problemas concediendo más dinero y creando más instituciones que no funcionarán. Esta espiral descendente es la historia más vieja del mundo. En cierto modo se trata de una realidad incontestable que ha acechado en todas las épocas de la historia humana.

Los problemas tratados de este modo son, por lo general, los relativos a la justicia ética y social, como en el caso de la atención a los «necesitados». Estos temas son de tal naturaleza que su discusión enciende los ánimos, y es imposible un análisis desapasionado de los mismos. Todos quieren aparentar que se preocupan y, en la egota competición por demostrar su humanidad, la gente nunca afronta los problemas fundamentales. Con el fin de evitar los habituales golpes de pecho, permítaseme analizar un problema biomédico que tiene un efecto directo sobre la vida del ciudadano medio. Trata de la respuesta planificada que da nuestra cultura al problema cada vez más frecuente de la demencia senil. Es un problema que no va a

desaparecer. Si pudiéramos hacer frente a este tipo de problema social, podríamos afrontar mejor los demás.

Los brillantes avances de la medicina moderna han dado lugar a una situación extraña, al prolongar la vida sin prevenir las enfermedades del cerebro. La demencia senil afecta a un 16 por ciento aproximadamente de las personas mayores de 65 años. Este problema no existía cuando la esperanza de vida era más baja. Actualmente, conforme la medicina moderna aumenta la esperanza de vida mediante todo tipo de nuevos remedios somáticos, aumenta el número absoluto de personas ancianas que poseen cuerpos sanos. La demencia senil está tan extendida que prácticamente todos nosotros estamos familiarizados con ella.

La razón por la cual los externalistas hacen propuestas para controlar la demencia senil estriba en que una persona con demencia senil puede ser una entidad social perjudicial. Un abuelo que siempre fue sensible, capaz de contarnos historias para divertirnos, ya no puede hablar coherentemente. El comportamiento ordenado ya no le resulta posible.

El externalista orientado socialmente combina sus intereses con los del externalista orientado hacia los negocios, y defiende la construcción de clínicas particulares, residencias para la tercera edad y otras instituciones de atención y cuidados. El Estado o una institución privada asumen una responsabilidad familiar. Para alivio de los parientes, el estímulo perturbador es apartado de la familia, y el empresario paramédico se muestra encantado con los nuevos y crecientes beneficios procedentes del pago del mantenimiento de estas personas, tanto por parte del sector privado como del público.

Esta solución externalista a corto plazo sólo puede funcionar con un pequeño número de personas. Se estima que para 1990, atender a esta población costará a la socie-

dad, sólo en Norteamérica, más de treinta y cinco mil millones de dólares al año. Esta cantidad no está a nuestro alcance; la cultura no puede soportarla. En resumen, no hay solución externalista viable, y tampoco se vislumbra una solución científica cercana.

La solución internalista requiere mucha disciplina, pero funciona. La persona demente tiene que ser atendida mediante unidades mucho más pequeñas y, en la mayor parte de los casos, tal atención debería ser una obligación de la familia. En lugar de cooperativas de atención y cuidados infantiles, debería haber cooperativas de atención y cuidados seniles. La familia de clase media acomodada debería asumir que se trata de una responsabilidad personal y no exigir una solución social.

E.: Una última cuestión; ¿qué tiene en contra de la religión?

M. S. G.: Nada, ¿por qué?

E.: Porque de su teoría sobre el modo como se forman las creencias se deduce que todas las creencias son relativas. Eso significa que usted no cree en una religión verdadera.

M. S. G.: Intento ayudar a conseguir un mejor conocimiento del proceso de formación de creencias y confío en que estemos alcanzando una mejor comprensión de estos mecanismos. Las creencias religiosas son un buen ejemplo de cómo funciona ese proceso. Por lo general, los estudiosos de la religión trazan el curso histórico de una religión determinada, y los más brillantes de entre ellos tratan de descubir los conflictos relativos a los dogmas que se producen no sólo entre religiones, sino también en el seno de una misma religión. Después intentan estudiar de qué modo influyen las fuerzas históricas y sociales externas sobre esos sistemas de creencias. Mi propósito es totalmente diferente. Yo quiero averiguar en primer lugar las razones por las que las personas poseen

tales creencias. ¿Por qué los humanos desarrollan y mantienen esas creencias mágicas?

E.: Eso explica su interés por las primitivas creencias de los egipcios y los mesopotámicos y por las diferencias existentes entre ellas en función de variables ambientales. Pero hay una cuestión más general, ya que, desde la Ilustración, las mentes cultivadas se han alejado de la creencia en la religión organizada. Las creencias científicas, así como el mejor conocimiento de los procesos históricos, parecen haber ocupado el lugar de las creencias religiosas. ¿Cree usted realmente que las personas cultas siguen creyendo en las verdades reveladas? Los hombres primitivos no tenían elección.

M. S. G.: Entiendo lo que dice pero no comparto su opinión. Bill Buckley cree; Donald Mackay cree. Sir John Eccles cree. Incluso Dave Premack es proclive al misticismo. Nadie puede acusar a este grupo de personas de no preocuparse por las cosas mundanas. Todos tienen procesadores de texto, medicamentos en sus cuartos de baño, y acciones invertidas en Comsat, pero con todo siguen teniendo creencias bastante sencillas. Y si se hiciera un análisis apropiado, habría tantas personas encantadoras creyentes como no creyentes. No tiene nada que ver que se pueda analizar minuciosamente cualquier creencia concreta y aclarar sus contradicciones. Somos una especie cuya característica fundamental es el hecho de creer. Y creemos tanto debido al modo como están organizados nuestros cerebros como a ciertas capacidades que poseemos en el cerebro izquierdo.

E.: Su argumentación respecto a las razones por las que los humanos formamos creencias puede resumirse, por tanto, como sigue: El cerebro está organizado en función de módulos de procesamiento y cada uno de los mismos puede producir comportamientos. Estos comportamientos, que pueden ejecutarse internamente o dirigirse

externamente, son interpretados después mediante procesos no lingüísticos especializados que se localizan por lo general en la mitad izquierda del cerebro. A continuación, el módulo «intérprete», llamémoslo MI, informa de sus hipótesis sobre las relaciones causales entre las cosas a los centros lingüísticos del cerebro izquierdo, que podemos denominar MH, es decir, el módulo «hablante».

M. S. G.: Así es más o menos.

E.: Y debido a que los humanos generamos hipótesis de forma más o menos automática sobre nuestros comportamientos que son producidos libremente, tenemos el profundo convencimiento de que nuestras creencias o pensamientos son voluntarios. En relación con esto está el hecho de que cuando las leyes o costumbres impuestas externamente eliminan la posibilidad de elección entre respuestas alternativas, el MI no se ocupa de su cometido y no nos obliga, por tanto, a alterar nuestras creencias personales. Tenemos una salida fácil en virtud del hecho de que no hay que tomar una decisión personal que requiera una interpretación y, por tanto, atribuimos las razones de nuestra actuación al sistema externo que creó la imposición.

M. S. G.: Sí, pero hay otro aspecto. Lo que yo digo es que, debido a que ahora sabemos que nuestros cerebros están organizados de esa forma, algunas organizaciones sociales están condenadas a desaparecer. Quiero decir, en concreto, que el externalista (que en realidad es un internalista, puesto que también posee un cerebro humano con un MI) que aboga por la curación de los males sociales mediante planificaciones basadas en recompensas está perjudicando a la especie, debido a que crea un ambiente artificial para algunas personas que ellas mismas tienen que interpretar. Y, tristemente, el pobre destinatario no puede anular las recompensas impuestas externamente y se limita a aceptar los bienes que le tocan en suerte. En la

sociedad occidental, el destinatario puede por lo general elegir entre alternativas. A causa de eso, su MI se activa y tiene que explicar por qué acepta los bienes fortuitos. Ese es el momento psicológico en el que surgen las hipótesis antisociales y en el que empieza a derrumbarse el sistema social. El externalista, por tanto, crea panoramas sociales que resultan destructivos.

E.: A partir de lo que usted dice me pregunto si hay o no alguna esperanza de que nuestra especie pueda aprender a convivir en una sociedad en la que grupos diversos mantienen y quieren imponer diferentes creencias sobre la naturaleza de las cosas. Puesto que no hay posibilidad de cambiar la propiedad del cerebro que se basa en esas creencias características de la actividad humana, la única esperanza estriba en que los humanos lleguen a apreciar cómo están formadas las creencias y, mediante este conocimiento, comiencen a darse cuenta, al menos en cierta medida, de la naturaleza relativa de las mismas.

M. S. G.: No lo sé. Recuerdo un día que estaba en Jerusalén, contemplando el Muro de las Lamentaciones y, más allá de éste, la magnífica mezquita del Al-Agsa, mientras me llegaba el aroma del incienso arrastrado por el aire procedente de la iglesia del Santo Sepulcro. En Israel hay millones de personas que están siempre apuntándose con sus armas debido a sus creencias sobre el valor de esa pequeña parcela de terreno. Los árabes y los judíos están dispuestos por igual a mentir, robar y matar, a defenderse y atacar, con el fin de poder decir que ese trozo de tierra es suyo. A simple vista, la situación humana es muy real y las opiniones sobre la importancia de este problema han ocupado las páginas de los periódicos y de los libros durante casi 40 años. Para apreciar el problema en toda su dimensión hay que comprender el intenso sentimiento subjetivo que uno experimenta cuando tiene una creencia.

Hubo una época de mi vida en la que recibir la sagrada comunión después de haberme confesado provocaba los más intensos sentimientos de mérito que puedan imaginarse. Me educaron de acuerdo con una serie de reglas para vivir, reglas que me permitían decir con orden y prontitud cómo comportarme; viví conforme a las mismas, infringiéndolas levemente alguna vez, durante mucho tiempo. La comunión era la celebración de este contrato, y era una experiencia muy dulce. Esa sumisión a las recompensas que ese tipo de creencias puede ofrecer es, naturalmente, lo que hace que millones de personas las abracen.

Es evidente que no hay forma de que los árabes, los judíos o los cristianos abandonen este tipo de placeres de la mente y del corazón. Los verdaderos creyentes dicen tranquilamente que ellos saben que los datos arqueológicos, biológicos, psicológicos e históricos señalan de qué modo se forman las creencias, pero que el investigador no comprende una cuestión fundamental. Ellos, a diferencia de los otros, tienen razón.

Todos sabemos esto y lo respetamos, pero yo también sé algo. Sé que todos tenemos influencias de los demás. Espero que mi libro haya explicado de un modo sencillo algunas de las razones orgánicas por las que nuestra especie genera y sostiene creencias de todo tipo. Con ese conocimiento, quizás todos aquellos que tienen creencias que sean contrarias a las creencias de otras personas puedan llegar a ser, mediante una serena reflexión, más tolerantes.

Notas bibliográficas

- ¹ Roger W. Sperry, "The Growth of Nerve Circuits", Scientific American 201 (1959): 68-75.
 - ² John B. Watson, Behaviorism (Nueva York: Norton, 1925).
- ³ Paul Weiss, «Nerve Patterns: The Mechanisms of Nerve Growth», Third Growth Symposium 5 (1941): 163-203.
- ⁴ Roger W. Sperry, «Mechanisms of Neural Maturation», en S. S. Stevens, ed., *Handbook of Experimental Psychology* (Nueva York: Wiley, 1951), 236-80.
- ⁵ Roger W. Sperry, «Chemoaffinity in the Orderly Growth of Nerve Fiber Patterns of Connections», *Proceedings of the National Academy of Science* 50 (1963): 703-10.
- ⁶ Paul H. Patterson y Dale Purves, Readings in Developmental Neurobiology (Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory, 1982).
- ⁷ David H. Hubel y Torsten N. Wiesel, «Receptive Fields, Binocular Interaction and Functional Architecture in the Cat's Visual Cortex», *Journal of Physiology* 165 (1962): 559-68; y David H. Hubel y Torsten N. Wiesel, «The Period of Susceptibility to the Physiological Effects of Unilateral Eye Closure in Kittens», *Journal of Physiology* 206 (1970): 419-36.

279

- ⁸ Fernando Nottebohm, «Ontogeny of Bird Song», Science 167 (1970): 950-56; y Fernando Nottebohm, «Brain Pathways for Vocal Learning in Birds: A Review of the First Ten Years», Progress in Psychobiological and Physiological Psychology 9 (1980): 85-124.
- ⁹ Joseph Altman, «Postnatal Growth and Diferentiation of the Mammalian Brain with Implications for a Morphological Theory of Memory», en Gardner Quarton, Theodore Melnechik y Francis O. Schmidt, eds., *The Neurosciences: A Study Program* (Nueva York: Rockefeller University Press, 1967), 723-43.
- ¹⁰ Paul I. Yakovlev y Andre R. LeCours, «The Myelogenetic Cycles of Regional Maturation of the Brain», en Alexandre Minkowski, ed., Regional Development of the Brain in Early Life (Oxford: Blackwell, 1967).
- ¹¹ Mark R. Rosenzweig y Edward L. Bennett, eds., Neural Mechanisms and Memory (Cambridge, Mass.: M.I.T. Press, 1976).
- ¹² Giorgio M. Innocenti, «The Development of Interhemispheric Connections», *Trends in Neurosciences* 4 (1981): 142-44.
- ¹³ Bryan T. Woods, «The Restricted Efforts of Right Hemisphere Lesions After Age One: Wechsler Test Data», Neuropsychologia 18 (1980): 65-70.
- ¹⁴ Alf Brodal, Neurological Anatomy, 2.^a ed. (Nueva York: Oxford University Press, 1969).
- ¹⁵ Richard L. Sidman y Pasko Rakic, «Neuronal Migration with Special Reference to Developing Human Brain: A Review», *Brain Research* 62 (1973): 1-35.
- ¹⁶ Mark A. Berkley, «Vision: The Geniculo Cortical System», en R. Bruce Masterson, ed., *Handbook of Behavioral Neurobiology: Sensory Integration* (Nueva York: Plenum Press, 1978).
- ¹⁷ Jack R. Cooper, Floyd K. Bloom y Robert H. Roth, *The Biochemical Basis of Neuropharmacology* (Nueva York: Oxford University Press, 1978).
- ¹⁸ Floyd K. Bloom, D. Segal, N. Ling y R. Grillemin, «Endorphins: Profound Behavioral Effects in Rats Suggest New Etiological Factors in Mental Illness», *Science* 194 (1976): 630.

CAPITULO 3

¹ Ronald E. Myers y Roger W. Sperry, «Interocular Transfer of a Visual Form Discrimination Habit in Cats After Section of the Optic Chiasm and Corpus Callosum», *Anatomical Record* 115 (1953): 351-52; y Roger W. Sperry, «The Corpus Callosum and Interhemispheric Transfer in the Monkey», *Anatomical Record* 131 (1958): 297.

- ² Roger W. Sperry, «Cerebral Organization and Behavior», Science 133 (1961): 1749-57.
- ³ Andrew J. Akelaitis, «Studies on Corpus Callosum: Higher Visual Functions in Each Homonymous Field Following Complete Section of Corpus Callosum», Archives of Neurology and Psychiatry (Chicago) 45 (1941): 788; Andrew J. Akelaitis, «Studies on Corpus Callosum: Study of Language Functions (Tactile and Visual, Lexia and Graphia) Unilaterally Following Section of Corpus Callosum», Journal of Neuropathology and Experimental Neurology 2 (1943): 226; Andrew J. Akelaitis, «Study of Gnosis, Praxis, and Language Following Section of Corpus Callosum and Anterior Commissure», Journal of Neurosurgery 1 (1944): 94; y Andrew J. Akelaitis et al., «Studies on Corpus Callosum: Contribution of Dyspraxia and Apraxia of Corpus Callosum», Archives of Neurology and Psychiatry (Chicago) 47 (1942): 971.
- ⁴ Joseph E. Bogen y Peter J. Vogel, «Cerebral Commissurotomy in Man: Preliminary Case Report», Bulletin of the Los Angeles Neurological Society 27 (1962): 169; y Michael S. Gazzaniga, Joseph E. Bogen y Roger W. Sperry, «Some Functional Effects of Sectioning the Cerebral Commissures in Man», Proclamation of the National Academy of Science USA 48 (1962): 1765-69.
- ⁵ Roger W. Sperry, «Brain Bisection and Mechanisms of Consciousness», en Sir John C. Eccles, ed., *Brain Mechanisms and Conscious Experience* (Nueva York: Springer-Verlag, 1965); y Michael S. Gazzaniga y Roger W. Sperry, «Language After Section of the Cerebral Commissures», *Brain* 90 (1967): 131-48.

- ¹ Robert E. Ornstein, *The Psychology of Consciousness* (San Francisco, Calif.: Freeman, 1972).
- ² Michael S. Gazzaniga, Joseph E. Bogen y Roger W. Sperry, «Some Functional Effects of Sectioning the Cerebral Commissures in Man», *Proceedings of the National Academy of Sciences USA* 48 (1962): 1765-69.
- ³ Joseph E. Bogen y Michael S. Gazzaniga, «Cerebral Commissurotomy in Man: Minor Hemisphere Dominance for Certain Visuospatial Functions», *Journal of Neurosurgery* 23 (1965): 394-99.
- ⁴ Jerre Levy, «Psychological Implications of Bilateral Asymmetry», en Stuart J. Dimond y J. Graham Beaumont, eds., *Hemisphere Function in the Human Brain* (Nueva York: Halsted Press, 1974).
- ⁵ Jerre Levy, Colwyn Trevarthen y Roger W. Sperry, «Perception of Bilateral Chimeric Figures Following Hemispheric Deconnection», *Brain* 95 (1972): 61-78.

⁶ Michael S. Gazzaniga y Joseph E. LeDoux, *The Integrated Mind* (Nueva York: Plenum, 1978).

- ⁷ Michael S. Gazzaniga, Joseph E. Bogen y Roger W. Sperry, «Observations of Visual Perception After Disconnection of the Cerebral Hemispheres in Man», *Brain* 88 (1965): 221.
- ⁸ Joseph E. LeDoux, Donald H. Wilson y Michael S. Gazzaniga, «Block Design Performance Following Callosal Sectioning: Observations on Functional Recovery», Archives of Neurology 35 (1978): 506-8.
- 9 Robin Yin, «Looking at Upside-down Faces», Journal of Experimental Psychology 18 (1969): 141-47.
- ¹⁰ Michael S. Gazzaniga y Charlotte S. Smylie, «Facial Recognition and Brain Asymmetries: Clues to Underlying Mechanisms», *Annals of Neurology* 13 (1983): 536-40.
- ¹¹ Robert Nebes, «Perception of Spatial Relationships by the Right and Left Hemispheres of Commissurotomized Man», *Neuropsychologia* 11 (1973): 285-89.
- ¹² Brenda Milner y Laughlin Taylor, «Right Hemisphere Superiority in Tactile Pattern Recognition After Cerebral Commissurotomy: Evidence for Nonverbal Memory», *Neuropsychologia* 10 (1972): 1-15.

- ¹ Michael S. Gazzaniga, Donald H. Wilson, y Joseph E. LeDoux, «Language, Praxis, and the Right Hemisphere: Clues to Some Mechanisms of Consciousness», *Neurology* 27 (1977): 1144-47.
- ² J. J. Sidtis, B. T. Volpe, D. H. Wilson; M. Rayport y M. S. Gazzaniga, «Variability in Right Hemisphere Language Function After Callosal Section: Evidence for a Continuum of Generative Capacity», *The Journal of Neuroscience* 1 (1981): 323-31; y M. S. Gazzaniga, C. S. Smylie, K. Baynes, W. Hirst, y C. McCleary, «Profiles of Right Hemisphere Language and Speech Following Brain Bisection», *Brain and Language* 22 (1984): 206-20.
- ³ John J. Sidtis, B. T. Volpe, J. D. Holtzman, D. H. Wilson; y M. S. Gazzaniga, «Cognitive Interaction After Staged Callosal Section: Evidence for Transfer of Semantic Activation», *Science* 212 (1981): 344-46.
- ⁴ Michael S. Gazzaniga y Joseph E. LeDoux, *The Integrated Mind* (Nueva York: Plenum Press, 1978).
- ⁵ Joseph E. LeDoux, Donald H. Wilson y Michael S. Gazzaniga, «A Divided Mind: Observations on the Conscious Properties of the Separated Hemispheres», *Annals of Neurology* 2 (1977): 417-21.
- ⁶ Michael S. Gazzaniga y Charlotte S. Smylie, «What Does Language Do for a Right Hemisphere?», en Michael S. Gazzaniga, ed., *Handbook of Cognitive Neuroscience* (Nueva York: Plenum Press, 1984).

- ⁷ Michael S. Gazzaniga, «On Dividing the Self: Speculations from Brain Research», en W. A. den Hartog Jager et al., eds., Proceedings of the 11th World Congress of Neurology (Amsterdam: Excerpta Medica, 1978); y Michael S. Gazzaniga y Bruce T. Volpe, «Split-brain Studies: Implications for Psychiatry», en Silvano Arieti y H. Keith H. Brodie, eds., American Handbook of Psychiatry, vol. 7, Advances and New Directions (Nueva York: Basic Books, 1981).
- ⁸ Leon Festinger, A Theory of Cognitive Dissonance (Stanford, Calif.: Stanford University Press, 1957).

- ¹ Juin A. Wada y Theodore Rasmussen, «Intracarotid Injection of Sodium Amytal for the Lateralization of Cerebral Dominance: Experimental and Clinical Observations», *Journal of Neurosurgery* 17 (1962): 266-82.
- ² Gail Risse y Michael S. Gazzaniga, «Well-kept Secrets of the Right Hemisphere: A Carotic Amytal Study of Restricted Memory Transfer», *Neurology* 28 (1976): 950-93.
- ³ Bruce T. Volpe, Joseph E. LeDoux y Michael S. Gazzaniga, «Information Processing of Visual Stimuli in an Extinguished Field», *Nature* 282 (1979): 722.
- ⁴ Robert Ruff y Bruce T. Volpe, «Reduplication of the Local Environment After Right Parietal and Right Frontal Brain Injury», Journal of Neurology, Neurosurgery, and Psychiatry 44 (1981): 382-86.
- ⁵ M. S. Gazzaniga, J. E. LeDoux, C. S. Smylie y B. T. Volpe, «Plasticity in Speech Organization Following Commissurotomy», *Brain* 102 (1979): 805-15.
- ⁶ Michael S. Gazzaniga, «Right Hemisphere Language Following Brain Bisection: A 20-year Perspective», *American Psychologist* 38, n° 5 (1983): 525-37.
- ⁷ M. S. Gazzaniga, C. S. Smylie, K. Baynes, W. Hirst, y C. McCleary, "Profiles of Right Hemisphere Language and Speech Following Brain Bisection", *Brain and Language* 22 (1984): 206-20.
- ⁸ Jean Piaget, The Child's Conception of the World (Nueva York: Harcourt, Brace, 1929).
- ⁹ David Premack, *Intelligence in Ape and Man* (Hillsdale, N.J.: Erlbaum, 1976).

CAPITULO 7

¹ Michael S. Gazzaniga, «The Biology of Memory», en Mark R. Rosenzweig y Edward L. Bennett, eds., Neural Mechanisms of Learning and Memory (Cambridge, Mass.: M.I.T. Press, 1976).

² William B. Scoville y Brenda Milner, «Loss of Recent Memory After Bilateral Hippocampal Lesions», Journal of Neurology, Neurosur-

gery, and Psychiatry 20 (1957): 11-21.

- ³ Brenda Milner, «Les Troubles de la mémoire accompaynant des lesions hippocampiques bilaterales», en P. Passaurant, ed., *Physiologie de l'hippocampus* (París: Centre Nationale de la Recherche Scientifique, 1962).
- ⁴ Larry R. Squire y Robert Y. Moore, "Dorsal Thalamic Lesions in a Noted Case of Chronic Memory Dysfunction", *Annals of Neurology* 6 (1979): 503-6.
- ⁵ Neal J. Cohen y Larry R. Squire, "Preserved Learning and Retention of Pattern Analyzing Skill in Amnesia: Dissociation of Knowing How and Knowing That", *Science* 210 (1980): 207-9.
- ⁶ Neal J. Cohen y Larry R. Squire, «The Amnesic Patient H. M.: Learning and Retention of a Cognitive Skill», Society for Neuroscience Abstracts 7 (1981): 235.
- ⁷ Elizabeth R. Warrington y Larry Weiskrantz, «The Amnesic Syndrome: Consolidation or Retrieval?», *Nature* 228 (1970): 628-30.
- ⁸ William Hirst y Bruce T. Volpe, «Temporal Order Judgments with Amnesia», *Brain and Cognition* 1 (1982): 294-306.
- ⁹ Kathleen Redington, Bruce T. Volpe, y Michael S. Gazzaniga, «Failure of Preference Formation in Amnesics», Neurology 34 (1984): 536-38.
- ¹⁰ B. T. Volpe; P. Herscovitch; M. E. Raichle; M. S. Gazzaniga; W. Hirst; y D. C. Derrington, «PET Defined Metabolic Abnormalities in Transient and Chronic Amnesia», *Neurology* (en prensa).
- ¹¹ Jeffrey D. Holtzman y Michael S. Gazzaniga, «Dual Task Interactions Due Exclusively to Limits in Processing Resources», *Science* 218 (1982): 1325-27.

- ¹ Anthony Marcel, «Conscious and Unconscious Perception: An Approach to the Relations Between Phenomenal Experience and Perceptual Processes», Cognitive Psychology 15 (1983): 238-300.
- ² Michael S. Gazzaniga, Jeffrey D. Holtzman y Charlotte S. Smylie, «Speech Performance Without Cognition» (en preparación).
 - ³ John Campion, Richard Latto e Y. M. Smith, «Is Blindsight an

Effect of Scattered Light, Spared Cortex, and Near-threshold Vision?», The Behavioral and Brain Sciences 6 (1983): 423-86.

- ⁴ Jeffrey D. Holtzman, Bruce T. Volpe y Michael S. Gazzaniga, «Deficits in Visual/Motor Control Despite Intact Subcortical Visual Areas», Neurology 34 (suppl.) (1984): 187; y Jeffrey D. Holtzman, «Interactions Between Cortical and Subcortical Visual Areas: Evidence from Human Commissurotomy Patients», Vision Research 24 (1984): 801-13.
- ⁵ J. J. Sidtis, B. T. Volpe, J. D. Holtzman, D. A. Wilson, y M. S. Gazzaniga, "Cognitive Interaction After Staged Callosal Section: Evidence for a Transfer of Semantic Activation", *Science* 212 (1981): 344-46.
- ⁶ M. S. Gazzaniga, J. D. Holtzman, J. Gates, M. D. F. Deck y B. C. P. Lee, «NMR Verification of Surgical Section of the Human Corpus Callosum and Presence of the Anterior Commissure», *Neurology* (en prensa).
- ⁷ Michael S. Gazzaniga y Charlotte S. Smylie, «What Does Language Do for a Right Hemisphere», en Michael S. Gazzaniga, ed., *Handbook of Cognitive Neuroscience* (Nueva York: Plenum Press, 1984).
 - ⁸ Stephen Kosslyn, Image and Mind (Cambridge, Mass.: Harvard

University Press, 1981).

⁹ S. Kosslyn, J. D. Holtzman, M. Farah, y M. S. Gazzaniga, «A Comprehensive Analysis of Mental Imagery Generation: Evidence from Functional Dissociations in Split-brain Patients», *Journal of Experimental Psychology: General* (en prensa).

- ¹ Judson Mills, «Changes in Moral Attitudes Following Temptation», Journal of Personality 26 (1958): 517-21.
- ² Leon Festinger y J. Merrill Carlsmith, «Cognitive Consequence of Forced Compliance», *Journal of Abnormal and Social Psychology* 58 (1959): 203-10.
- ³ Arthur R. Cohen, «An Experiment on Small Rewards for Discrepant Compliance and Attitude Change», en Jack W. Brehm y Arthur R. Cohen, eds., *Explorations in Cognitive Dissonance* (Nueva York: Wiley, 1962).
- ⁴ M. Ross, «Salience of Rewards and Intrinsic Motivation», Journal of Personality and Social Psychology 32 (1975): 245-54.
- ⁵ Donald M. MacKay, Freedom of Action in a Mechanistic Universe: The Eddington Lecture (Cambridge, U.K.: Cambridge University Press, 1967).

CAPITULO 10

¹ Gary Lynch, comunicación personal.

² Jacques Tixier, comunicación personal.

- ³ Leon Festinger, The Human Legacy (Nueva York: Columbia University Press, 1983).
- ⁴ Edward O. Wilson, Sociobiology (Cambridge, Mass.: Harvard University Press, 1975).
- ⁵ Richard Nisbett y Lee Ross, Human Inference: Strategies and Shortcomings of Social Judgment (Englewood Cliffs, N.J.: Prentice-Hall, 1980).

6 Yves Coppens, Exposé sur le cerveau: Le cerveau des hommes fossi-

les (París: Institut de France, Académie des Sciences, 1981).

- ⁷ Michael S. Gazzaniga y Charlotte S. Smylie, «Facial Recognition and Brain Asymmetries: Clues to Underlying Mechanisms», *Annals of Neurology* 13 (1983): 536-40.
- ⁸ Ofer, Bar-Yosef, «Prehistory of the Levant», Annual Review of Anthropology 9 (1980): 101-33.
 - 9 Robert J. Wenke, Patterns in Prehistory (Nueva York: Oxford Uni-

versity Press, 1980). 🗼 🥕

- ¹⁰ David Premack, «Reinforcement Theory», en David Levine, ed s., Nebraska Symposium on Motivation (Lincoln, Neb.: University of Nebraska Press, 1965).
- ¹¹ Henri Frankfort, H. Frankfort, J. A. Wilson, T. Jacobsen y W. A. Irwin, *The Intellectual Adventure of Ancient Man* (Chicago y Londres: The University of Chicago Press, 1946, 1977).

- ¹ Norman Geschwind, «Behavioral Change in Temporal Epilepsy», Archives of Neurology 34 (1977): 453; Norman Geschwind, «Editorial: Behavioural Changes in Temporal Lobe Epilepsy», Psychological Medicine 9 (1979): 217-19; y Norman Geschwind, «Interictal Behavioral Changes in Epilepsy», Epilepsia 24, suppl. 1 (1983): S23-30; Norman Geschwind, «Pathogenesis of Behavior Change in Temporal Lobe Epilepsy», en Arthur A. Ward, Jr., J. Kiffin Penry y Dominick P. Purpura, eds., Epilepsy (Nueva York: Raven Press, 1983).
 - ² Stephen G. Waxman y Norman Geschwind, «Hypergraphia in Temporal Lobe Epilepsy», *Neurology* 24 (1974): 629-36.
 - ³ Patricia Phillips, *The Prehistory of Europe* (Bloomington, Ind.: Indiana University Press, 1980).
 - ⁴ Robert J. Wenke, *Patterns in Prehistory* (Nueva York: Oxford University Press, 1980).

- ⁵ John A. Wilson, «Egypt», en Henri Frankfort, J. A. Wilson, T. Jacobsen y W. A. Irwin, *The Intellectual Adventure of Ancient Man* (Chicago y Londres: The University of Chicago Press, 1946, 1977).
 - 6 Ibid.
 - ⁷ George Boas, The History of Ideas (Nueva York: Scribner's, 1969).
 - ⁸ Ibid.

Índice

Prólogo	9
Capítulo 1 El cerebro interpretativo	15
Capítulo 2. Principios fundamentales del cerebro	23
Capítulo 3 Estudios sobre el cerebro dividido: los primeros años	47
Capítulo 4 La desmitificación de la dicotomía entre cerebro de- recho y cerebro izquierdo	73
Capítulo 5 Los mecanismos cerebrales y la formación de creencias	92

urante siglos, el pensamiento occidental ha alimentado la idea de que nuestra conducta y nuestros pensamientos son producto de una entidad unitaria -la «mente» - que reside en ese intrincado laberinto de conexiones neuronales que es el cerebro. Desentrañar la estructura oculta en la densa maraña cerebral es uno de los grandes desafíos de la ciencia moderna. MICHAEL GAZZANIGA -famoso por sus experimentos sobre el cerebro dividido- es uno de los exploradores que con más éxito se ha adentrado en este laberinto. EL CEREBRO SOCIAL es la crónica de sus viajes por las moradas de la mente, escrita en lenguaje llano, asequible a todo el mundo y portadora de noticias sorprendentes: la mítica mente unitaria y consciente no existe. Lo que se oculta en el interior del laberinto es una «sociedad» de sistemas relativamente independientes (módulos), capaces de funcionar unos al margen de otros, y de los que nuestra conciencia muchas veces no tiene noticia. En palabras de D. Dennet, este libro constituye «una apasionante introducción a una serie de formas nuevas y sorprendentes de pensar sobre la mente humana». En esta misma colección: «La mirada interior» (LB 1601) de Nicholas Humphrey.

El libro de bolsillo Alianza Editorial

